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Abstract 

The problem of clustering data can be formulated as a graph partitioning prob­
lem. Spectral methods for obtaining optimal solutions have reveceived a lot of 
attention recently. We describe Perron Cluster Cluster Analysis (PCCA) and, for 
the first time, establish a connection to spectral graph partitioning. We show that 
in our approach a clustering can be efficiently computed using a simple linear map 
of the eigenvector data. To deal with the prevalent problem of noisy and possibly 
overlapping data we introduce the minChi indicator which helps in selecting the 
number of clusters and confirming the existence of a partition of the data. This 
gives a non-probabilistic alternative to statistical mixture-models. We close with 
showing favorable results on the analysis of gene expression data for two different 
cancer types. 
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1 Introduction 
In data analysis, it is a common first step to detect groups of data, or clusters, sharing important 
characteristics. The relevant body of literature with regard to methods as well as applications is 
vast (see [14] or [18] for an introduction). There are a number of ways to obtain a mathematical 
model for the data and the concept of similarity between data points, so that one can define 
a measure of clustering quality and design algorithms for finding a clustering maximizing this 
measure. The simplest, classical approach is to model data points as vectors from Rn. Euclidean 
distance between points measures their similarity and the average Euclidean distance between 
data points to the centroid of the groups they are assigned to is one natural measure for the quality 
of a clustering. The well-known k-means algorithm [18] will find a locally optimal solution in 
that setting. 
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One of the reasons why the development of clustering algorithms did not cease after k-means 
are the many intrinsic differences of data sets to be analyzed. Often the measure of similarity 
between data points might not fulfill all the properties of a mathematical distance function, or 
the measure of clustering quality has to be adapted, as for example the ball-shape assumption 
inherent in standard k-means does not often match the shape of clusters in real data. 

An issue which is usually, and unfortunately, of little concern, is whether there is a partition 
of the data into a number of groups in the first place and how many possible groups the data 
support. Whenever we apply a clustering algorithm which computes a k-partition this is an 
assumption we imply to hold for the data set we analyze. The problem is more complicated 
when k is unknown. In the statistical literature mixture models [20] are suggested as alternatives 
for problem instances where groups overlap. 

We address the problem of finding clusters in data sets for which we do not require the 
existence of a k-partition. The model we will use is a similarity graph. More specifically, we have 
G= (V,E), where V = {1,... ,n} is the set of vertices corresponding to the data points. We have 
an edge {i,j} between two vertices iff we can quantify their similarity, which is denoted w(i,j). 
The set of all edges is E and the similarities can be considered as a function w : E H^ R+

0. The 
problem of finding a k-partition of the data can now be formulated as the problem of partitioning 
V into k subsets, V = Uk

 =1Vi. Let us consider the problem of finding a k = 2 partition, say 
V = A UB. This can be achieved by removing edges {i,j} from E for which i e A and j e B. 
Such a set of edges which leaves the graph disconnected is called a cut and the weight function 
allows us quantify cuts by defining their weight or cut-value, 

cut(A,B) := V w(i,j). 
{i,j}<EE,i<EA,j<EB 

A natural objective is to find a cut of minimal value. This problem can be solved with the min-cut 
algorithm [22] in O(\V\ \E\ + \V\2log\V\). A problem with this objective function is that sizes of 
partitions do not matter. As a consequence, using min-cut will often compute very unbalanced 
partitions, effectively splitting V into a single vertex, or a small number of vertices, and one very 
large set of vertices; cf Fig. 1. We can alleviate this problem by evaluating cuts differently. 

One alternative measure is average cut, which is defined as 

cut(A,B) cut(A,B) 
Averagecut(A,B) := — :—: . 

\A\ \B\ 

Average cut is sensitive to the sizes of either A and B getting too small; as long as A and B are 
balanced the average cut yields 2/\V\ times the cut value, which is easily exceeded by the term 
for the smaller partition. 

Instead of just considering partition sizes one can also consider the similarity within par­
titions, for which we introduce the so-called association value of a vertex set A denoted by 
a (A) = a(A,V) := X X wij. Defining the normalized cut by 

i£Aj<EV 

cut(A,B) cut(A,B) 
Normcut(A,B)= — — — - + —, 

a(A,V) a(B,V) 
we observe that the cut value is now set into relation to the similarity of each partition to the 
whole graph. Vertices which are more similar to many data points are harder to separate. As 
we will see, the normalized cut is well suited as an objective function for minimizing because it 
keeps the relative size and connectivity of clusters balanced. 

The min-cut problem can be solved in polynomial time for k = 2. Finding k-way cuts in 
arbitrary graphs for k > 2 is NP-hard [6]. For the two other cut criteria, already the problem 
of finding a 2-way cut is NPC [Papadimitriou] [23]. However, we can find good approximate 
solutions [19, 23] to the 2-way normalized cut by considering a relaxation of the problem. In­
stead of discrete assignments to partitions consider a continuous indicator for membership. As it 
turns out, the eigenvectors obtained from a suitable eigenvector problem for the Laplacian of the 
pairwise-similarity graph G can be interpreted for exactly that purpose. This so-called spectral 
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method [19, 23] has been used for solving the k-partition problem directly as well as through 
successive computation of 2-partitions. Recall, that the weight function w is symmetric as the 
graph is undirected and the weights are non-negative; we will write W to denote the matrix of 
weights using the convention of weight zero for non-edges. With 

d(i) = 2^ w( i ,j) 
{i,j}∈E 

we can define the Laplacian matrix L of G as 

= di - W(i,j) if i = j , 
-W(i,j) if {i,j}∈E, (1) 

0 else. 

The normal form of the Laplacian of a weighted undirected graph G is then defined to be 
£> = D-1(D - W), whereD = diag(d(1),... ,d(n)). For solving the average cut problem we will 
consider the eigenvalue problem 

Lx = (D - W)x = Xx 

and for the normalized cut problem the generalized problem 

DZx = XDx 
(D - W)x = XDx (2) 

or the standard Eigenvalue problem of 

D- / (D - W)D- / x = Xx. (3) 

The running time of the 2-partition problem directly depends on the time to compute the 
second-smallest (or largest) eigenvector. For the standard eigenvalue problem Ax = Xx, it is 
O(n3) where n is the order of the graph. If A is sparse the Lanczos algorithm, an iterative 
solver, can compute an eigenvector in O(mn) +O(mM(n)), where m is the number of times the 
operation Ax is executed and M(n) is the cost of matrix-vector multiplication Ax. Note that m 
will be typically smaller than the worst-case bound ofn ; the exact value depends on the sparsity. 
Similarly,M(n) will be on the order of O (n) for sufficiently sparse instances. 

For solving the 2-partition problem, we are interested in the eigenvector x2 for the second-
smallest eigenvalue [19, 23]. In particular, we will inspect its sign structure and use the sign of 
an entry x2(i) to assign vertex i to one or the other vertex set. Similarly, for direct computation 
of k-partitions one can use all k eigenvectors to obtain k-dimensional indicator vectors. Previous 
approaches [2,23] relied on k-means clustering of the indicator vectors to obtain a k-partition in 
this space. 

Assume that the data can be partitioned and the assignment is given by the block diagonal 
matrix B. We then can write W as B+E, where E is some perturbation error. In this setting, 
under some further conditions, the recursive algorithm is guaranteed to arrive at clusters which 
are indeed the blocks inB. 

Theorem 1.1 [19] Let B be a perfect block diagonal matrix. Assume that the eigenvalue gap 
1 - 42 of each block Bi, i = 1,..., k, is at least ß (0 < ß < 1). In addition, let the difference 

between the k-th and (k+ 1)-th eigenvalues ofB be at least ß. Let E denote the perturbation 

error matrix for which W = B +E holds. We additionally assume E is bounded: ||E||2 < S, 

where qö < ß for some positive constant q and that the ratios of cluster sizes are bounded. 

Then, the recursive algorithm applied to the W matrix finds a clustering that differs from the 

optimal in O(n/q ) rows. 

3 



-*-J A ; *rr-
2 V v 2.1 

(a) Minimum cut 

2 ""2.1 

(b) Normalized minimum 
cut 

Figure 1: The first case is when minimum-cut can be wrong due to presence of low-degree vertices. 

The theorem implies that if the optimal clustering has a large degree of overlapping, the 
spectral algorithm will fail because <5 is close to ß and thus the constant q will be small. With 
our analysis in Section 3.3 we will give an example for this. In the next section, we will propose 
an indicator for the amount of overlapping in W which helps in deciding whether the recursive 
spectral method is applicable. Subsequently we will introduce an alternative approach to finding 
k-partitions even in absence of a perfect block structure. We first rephrase the problem equiv-
alently in terms of transition matrices of Markov-chains and use perturbation analysis to arrive 
at the main result, a geometric interpretation of the eigenvector data as a simplex. This allows 
to devise an assignment of data into overlapping groups and a measure for the deviation from 
the simplex structure, the so-called Min-chi value. The advantages of our method are manifold: 
there are fewer requirements on the similarity measure, it is effective even for high-dimensional 
data and foremost, with our robust diagnostic we can assess whether a unique k-partition exists. 
The immediate application value is two-fold. On one hand, the Min-chi value indicates whether 
trying to partition the data into k groups is possible. On the other hand, this can be used as a guide 
for deciding on the number of clusters. We demonstrate the practical effectiveness by evaluating 
our method on two gene expression data sets, which pose problems for partition algorithms as 
groups of genes sharing the same function tend to overlap and error levels as well as amount of 
noise tends to be very high. We conclude with a discussion with the very favorable results both 
for the diagnostic compared to classical cluster indices and the result of the clustering. 

2 Perturbation analysis of eigenvectors 

2.1 Comparing cut algorithms and the Perron Cluster Analysis 
If the graph cut problem is well-defined W is nearly block structured after a suitable permutation 
of rows and columns. The k-way graph cut problem with an edge weight matrix W can therefore 
be seen as a problem of recovering the hidden block structure of W. In the ideal case, W has 
k pairwise unconnected vertex sets. Reweighting the rows of W via T = D~1W ends up in 
a stochastic1 matrix T. In the ideal case, T has also block structure, where each block is a 
stochastic matrix, see Fig. 3 for k = 3. 

The following equations show that the eigenvectors of T and the eigenvectors of the normal­
ized cut problem (2) are identical: 

(D — W)y = XDy 
<=> D~ (D — W)y = Xy 
<=> y — Ty = Xy 
<=> Ty =(1 — X)y. (4) 

Because of equation (4) and X ~ 0 the eigenvectors of T corresponding to eigenvalues (1 — X) ~ 1 
are important, which are identical to the eigenvectors of the normalized cut algorithm. The ba-

1T is nonnegative and the row sums are 1, i.e. |T||1 
= 1. 
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Figure 2 : We draw 500 random samples from mixture of two normal distributions center at different means 
with mixing coefficients = [0.7,0.3]. The entry Wij is exp(-||xi -xj||

2) for all i, j. This picture shows that in 
the case of no overlapping of two clusters, the of the normalized cut occurs at the zero-crossing. 
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Figure 3: Structure of the stochastic matrix T in the case of k = 3 pairwise unconnected vertex sets after a 
suitable permutation of row and column indices. 

sic idea of the Perron (Cluster) Cluster Analysis (PCCA) is, that these eigenvectors are almost 
invariant under T, and that one can apply Markov chain theory to the stochastic matrix T, see 
Deuflhard et al. [7, 8]. The name PCCA derives from the so-called Perron eigenvalue X1 = 1 of a 
stochastic matrix [4, 21] and from the fact, that one uses eigenvectors corresponding to a cluster 
of eigenvalues near X1 for clustering the data. 

In the case, where W is symmetric, in [7] it is shown that an e-perturbation T of the stochastic 
matrix T, where 

T = T + eT( )+O (e ), (5) 
leads to an e-perturbation of the components of the corresponding eigenvectors y=y + O(e). 
Furthermore it is shown, that in the ideal case the sign structure of the k observed eigenvectors 
determines the index sets of the k uncoupled blocks uniquely. 

This leads to a former version of PCCA, where the sign structure of the perturbed eigen­
vectors is examined in order to find the hidden blocks of T. For k = 2, we now show that the 
former PCCA method and the 2-way partition method previously mentioned [19, 23] are the 
same. However both methods are not robust because the sign information may be sensitive to 
slight perturbations (e.g. “dirty zero” problem). In practise, the generalized eigenvalue problem 
for the normalized cut algorithm is often replaced by the solution of a symmetric problem, see 
equation (3). The following equations show, thaty =D-1/2x is just a positive component-wise 
scaling of the eigenvector x and therefore the eigenvectors x1,...,xk andy 1 , . . . ,yk corresponding 
to the eigenvalues X1,..., Xk share the same sign structure. 

D-1/2(D-W)D-1/2x=λx 
D-1/2 ( D - W ) y = λ D 1 / 2 y 
(D -W )y=λDy 
Ty=(1-λ)y. (6) 

Equation (6) also shows that the spectrum of T is real valued for a symmetric weight matrix 
W. In Section 2.2 it is shown, that there is a robust version of PCCA using not only the sign 
structre of the eigenvectors, but also the values of their components. 

2.2 Second order perturbation result - Simplex structure 
From a different point of view Huisinga et al. [16] examine the correspondence between the sign 
structure of eigenfunctions of a Markov operator (the continuos version of a stochastic matrix) 
and the characterization of so-called transition sets. From their context it seems natural, that 
in the general perturbed case the k first eigenvectors Y = [y 1 ,...,y^] of T comprise all 2k-1 

possible2 sign structures regarding the rows of Y. For the former PCCA algorithm, this means 
2Note, that y1 is a constant vector. 
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