Developing Gato and CATBox with Python:
Teaching graph algorithms through
visualization and experimentation

Alexander Schliep! and Winfried Hochstattler?

! ZAIK/ZPR, University of Cologne, Cologne, 50937, Germany
2 Institute of Mathematics, Clausthal University of Technology,
Clausthal-Zellerfeld, 38678, Germany

1 Abstract

Teaching algorithms, especially graph algorithms, is one of the natural
applications of multi-media in mathematics. The objects considered are
of a highly dynamic nature and require an adequate dynamic visualiza-
tion.

CATBox, the combinatorial algorithm tool-box, is an interactive course
combining a textbook with the visualization software Gato, the graph
animation tool-box. For the design of Gato, the following simple rules
were used to address 1ssues of clearness of presentation, consistency, level
of interactivity and software engineering.

— Use a real programming language instead of pseudo-code: By choos-
ing Python for presenting algorithms we bought consistency of the
presentation at the expense of using a syntactically slightly more
complex language compared to traditional pseudo-code.

— Visualization based on rules: Interesting events [5] in the visualiza-
tion always correspond to changes to data-structures used in the
algorithm. Therefore, those changes to data-structures should be
tightly coupled to the corresponding visualization commands. For
reasons of consistency and maintainability we added these ‘rules’ as
sub-classes of abstract classes implementing data-structures. This oc-
casionally provided surprising insights even in the case of very simple
algorithms.

— Choose the appropriate software framework: Over a number of years
various predecessors to CATBox, all under the same name but with
slightly different feature sets, have been implemented in a number of
ways. For the current implementation we chose Python/Tkinter, due
to the rules mentioned above and its availability on a large number
of computer-platforms.

— Good Software Engineering: The applicable aspects of the ‘Extreme
Programming’ methodology were used for developing Gato.

The application of these rules yields a software which allows learners
to experiment with both problem instances and the algorithms them-
selves.

2 A. Schliep and W. Hochstattler

We will also address software engineering issues arising in an acad-
emic setting with special emphasis on software quality control and cross-
platform requirements. Additionally, positive experiences resulting from
licensing Gato freely under the LGPL (Library GNU Public License) will
be discussed.

2 Introduction

Due to the advance of computer technology over the last decades, theo-
retical computer science, the theory of algorithms, gained tremendously
in relevance. Besides its importance in the pure and applied sciences, it
also became part of the tool-box in areas as diverse as Biology, Electrical
Engineering, Operations Research and Civil Engineering.

When considered merely a tool, the direct educational goal i1s pro-
gramming proficiency, and not understanding of theoretical computer
science. But in reality, programming proficiency depends on a number
of distinct qualities:

1. Algorithmic thinking,

2. proficiency in the implementation language, and

3. engineering aspects of programming; e.g., knowledge of development
methodologies such as design patterns, implementation frameworks,
development tools, languages appropriate to the problem at hand.

For beginning learners points 1. or 2. alone are usually difficult enough
to master. If these distinct areas are subsumed into one programming
class, the theoretical aspects of point 1. are obfuscated under the syntac-
tic and technical complexities of 2. — imagine learning Mathematics in
an unknown foreign language. Therefore you will find distinct algorithm
and programming language classes in most Computer Science curricula.

In the algorithm classes, graphs are the most widely used mathemat-
ical model to formalize problems. They are very intuitive models, can be
used to model a large number of relevant problems from many different
disciplines, support problems from all known complexity classes and are
suited to demonstrate a wide range of algorithmic approaches.

Teaching graph algorithms is one of the natural applications of multi-
media in mathematics. The objects considered are highly dynamic in na-
ture and require an adequate dynamic visualization. The existing pack-
ages for visualization, a partial survey of which can be found in [22], can
be roughly separated in two categories.

Instance visualization tools, e.g., BALSA [4] or TANGO [23,15], only
show the effect an algorithm has on the problem instance (i.e., the graph
the algorithm operates on), without revealing the code of the algorithm.
Thus, they occasionally further the understanding of those who already
know the algorithm, but rarely offer insights to beginners.

Code and instance visualization tools, as Leonardo [8,19], show both
the cause, a statement of an algorithm, and the effect, a change in the

Developing Gato and CATBox 3

problem instance. The link between cause and effect is usually achieved,
as it is in the previous category, by interspersing visualization commands
between the algorithm’s commands. This highly obfuscates the code for
complex algorithms. Sometimes the presentation of an algorithm is made
more appealing by hiding the actual code executed and presenting a
made-up version of the algorithm instead. Either way, this adds a layer
of indirection and a possible source of inconsistency.

We decided to develop an environment which addresses these issues
by a design based on consistency and immediate visualization and allows
for learning through extensive experimentation. CATBox, the Combina-
torial Algorithm Tool-Box, is an interactive course combining a textbook
with the visualization software Gato, the Graph Animation TOol-box.

CATBox
Copyrighted
Textbook
Algorithms Graphs
Instances
LGPL
: tho \ Library GNU
visualization Public License
software
Gred
graph
editor Project: Gato

Fig. 1. Overview of the components in the CATBox project.

It is based upon experiences gained in earlier projects at the ZATK/ZPR,
University of Cologne, and from teaching courses in this area at the
Technical University Cottbus and the University of Cologne. The tar-
get audience at present are undergraduate students in mathematics and
computer science.

Among other topics, minimal spanning tree, shortest-path, maximal-
flow and both weighted and non-weighted matching problems are cov-
ered. Each problem is first motivated by real-world examples. Students
learn about different possible solving strategies. This leads to the intro-
duction of algorithms. Relevant mathematical prerequisites and theoret-
ical investigations of the algorithms are then rigorously described. The

4 A. Schliep and W. Hochstattler

introduction and refinement of the algorithms go hand in hand with ex-
perimentation with Gato, putting an emphasis on extreme cases, such
as worst-case examples.

Gato uses a graphical, window-based user interface. The code of the
algorithm is displayed in the algorithm window. It also contains the user
interface controls. For examination of the algorithm a familiar debug-
ger look-and-feel is employed. A user can start or stop an algorithm,
set breakpoints (i.e., lines at which execution is stopped), trace into
procedures called (i.e., show the code for the procedure) and continue
execution. In a second window the graph the algorithm is operating on
is displayed. For every action of the algorithm visual feedback is given
by — for example — changing vertex or edge colors. We will explain our
rule-based visualization strategy and its implementation in Sect. 4.

By moving the mouse pointer over vertices and edges, additional
information (e.g., edge weight) is displayed. Certain operations, such
as selecting a vertex, can be performed interactively. Gred, the GRaph
EDitor, an easy to use editor for graphs, is integrated. Gato and Gred run
on a large number of different operating systems. For editing algorithms
a standard text editor can be used.

In the following sections we will discuss the design rationale behind
Gato, the choice of Python as a language for representing algorithms,
our choice of implementation platform and the design of our visualization
engine. Then, we will introduce the rule-based visualization strategy we
employed and its technical realization. We will conclude with a discussion
of the ‘extreme programming’ methodology employed in the development
of Gato. There, we will give consideration to software engineering issues
in an academic setting and positive experiences resulting from licensing

Gato under the LGPL (Library GNU Public License).

3 The design and implementation of Gato

Gato consists of three major functional building blocks, as shown in
Fig. 4. The data we have to deal with are algorithms and the instances
they act on; i.e., graphs.

1. The visualization engine supplies in its algorithm engine support to
execute algorithms under full user control, and also the technical
foundation to provide visual feedback.

2. The algorithm display shows the algorithm on-screen and is the cen-
tral component of the graphical-user-interface (GUT).

3. The graph display enables visualization by providing a rich methodic
interface for controlling the graphical display of graphs and editing
functions'.

As far as the general graphical-user-interface metaphor was concerned
we aimed for a very simple debugger.

! The GUI to editing functions is implemented in Gred.

Developing Gato and CATBox 5

“¢| GatoD091G- FordFulkersonalg |’ r| Gato - mf2.cat

Hle WAndow Layout ‘Help |

def UpdateFlow (Path):
delta = MinResCap(Path)
for (uv) in Path:

if u not in Neighbarkeod (v} :
addEdge (v, 1)

res[{wu] = 0
res[(u,v}] = res[{u,v}] - delta
res[(wu)] = res[{wu}] + delta
if res[(u)] == 0

DeleteEdge tu,v)

if IsEdge(u,v)
flow[(wv)] = flow[{u.v)] + del

else
flow[(w,u)] = flow[(w,u}] - del

return None

#dE Main

Whils not masinal I

Path = ShortestPath(s, t ‘ 100% — ‘

il — i Gato — mi2.cat (residual)
1
O AL

Shawtut(s)

st | step | race | contiwe| stop |

100% — |detta - 1.000000

Fig.2. The Ford-Fulkerson algorithm [1] for computing a maximum flow in
a capacitated directed graph is visualized in Gato. The algorithm window
is shown on the left, the graph on the right and the corresponding residual
network on the bottom right.

6

A. Schliep and W. Hochstattler

Fizi

Gato 0.91G- BFS-Traversal alg

fie window Layout

|

Gato - em.cat

visited[v] = v
0. Append (v}

vhile 0. IsMotEmpty()
v - Q.Top()

| Lsian Step | Trace | Continue| Stop

‘um-/.,-\

Fig. 3. Dijkstra’s algorithm [1] for computing all shortest paths from a given
root vertex is displayed.

User
GUI GUI
Gred
Algorithm SEEEEEEER Graph pEEER grdai.tpc::
Display Display
start, stop, trace, visual feedback
breakpoints change color,
blink
: T A
1 1
v 1
1
Visualization Engine Graphs |
providing visual feedback (via GraphDisplay) < Instances
Algorithm Engine =
control of execution I
= Algorithms
h g
B —

Fig.4. The functional building blocks in Gato. Dashed lines designate a con-
trol relation and solid lines data-flow.

Developing Gato and CATBox 7
3.1 Choosing Python
According to [20] python can be described as

... an interpreted, interactive, object-oriented programming lan-
guage. It is often compared to Tcl, Perl, Scheme or Java.
Python combines remarkable power with very clear syntax. It
has modules, classes, exceptions, very high level dynamic data
types, and dynamic typing. There are interfaces to many system
calls and libraries, as well as to various windowing systems (X11,
Motif, Tk, Mac, MFC). New built-in modules are easily written
in C or C4++. Python is also usable as an extension language for
applications that need a programmable interface.

Python is used in a number of successful projects for teaching as-
pects of computer science and programming for an audience from middle-
school to university students [7,10,18,2]. The special interest group (SIG)
on use of Python in education, EDU-Sig [9] provides an active developer
mailing list and further links to relevant projects.

What from our point of view really distinguishes Python for use in
educational applications from other languages such as C, C++ or Java
is its remarkably clear and easy to learn syntax, cf. Fig. 5, which does
however look familiar enough to users already used to C, Pascal, etc..
As a matter of fact, for small examples Python code is not more com-
plex than pseudo-code in use in textbooks. The second author has also
used Python with great success for practical exercises in a numerical
algorithm class [14] taught to second-year students from business infor-
mation systems (“Wirtschaftsinformatik”), supporting the usability of
Python for students with no prior programming experience. Compared
to pseudo-code, the formal language definition enforces a higher level of
consistency in the formulation of algorithms.

The requirements of the algorithm engine also motivated our choice
of Python. Due to its interpreted nature and the fact that parts of the
run-time system are written in Python itself, the standard library pro-
vides a debugger class [21]. Hence, the development of our algorithm
engine consists of sub-classing the existing debugger class and providing
the hooks for user interface control and visualization display. Thus, we
arrived at a solution where the algorithm code displayed is the actual
code executed and also the code triggering the visualization.

3.2 Python as an implementation language

Since a Python interpreter can easily be embedded into other applica-
tions [27], the choice of the implementation language was an independent
one. From our point of view, the thorough object-orientation and the ex-
cellent exception handling in the core language, and the large number of

8 A. Schliep and W. Hochstattler

for v in Vertices:
visited[v] = 0

root = PickVertex()
visited[root] = 1
Q. Append(root)

while Q.IsNotEmpty():
v = Q.Top()
for w in Neighborhood(v):
if visited[w] ==
visited[w] = 1
Q. Append (w)

Fig.5. An implementation of a Breadth-First-Search (BFS) algorithm in
Python.

functional areas?

covered by the standard libraries are some of Python’s
very strong points.

Python allows the use of a large number of different GUI-frameworks [25].
We choose to use Tkinter, the library providing bindings to the well
known Tk (as in Tcl/Tk [26]) framework, for various reasons. Tt is the
only framework which, besides Unix, Linux and Microsoft Windows, sup-
ports Macintosh OS reasonably well. Also, it offered the widest variety
of ‘rich’ widgets at the time we had to make this design decision. For
example the canvas, the class to display graphical objects, is thoroughly
object oriented. Objects such as lines, circles, text labels placed on a can-
vas can be modified independently in their properties, location and size
at any time. Method call-backs can be directly bound to those objects, so
interactive behavior can be easily implemented. Also, export to encapsu-
lated postscript files is supported. Tk is certainly not a reasonable choice
for developing a full-blown 3D-CAD application, but it has more than
adequate performance for Gato. Today, Java’s Swing library [16] used
with JPython [17], a Python interpreter written in Java, which makes
the Java libraries accessible from Python, might be an alternative.

The language features and the libraries and frameworks available
yield a very ezpressive language. In comparison with an unpublished
CATBox version, CATBOX++, developed in C++ with the graphical
user interface cross-platform-library XVT [28], which was the industry-
standard at that time, we were able to make the following observations:
Moving to Python reduced the number of lines of code (LOC) by at
least a factor of fifteen®. Currently Gato has about 6,000 LOC includ-

2 Even color space conversion, used for increased distinguish-ability among
colors of, say, labels and vertices, is among the functionality provided.

¥ We simultaneously added additional features during the re-implementation,
making it difficult to obtain more than a lower bound.

Developing Gato and CATBox 9

ing the complete developer documentation. While LOCs is certainly just
one relevant measure in software engineering, this reduction greatly fa-
cilitated re-factorization when needed and encourages contributions to
sub-systems of the package (typically in the 500 LOC range).

Another important factor is the increased development speed due
to avoiding laborious edit-compile-link-cycles and having to make code
compliant with compilers on different platforms, as it 1s often the problem

with C++.

3.3 The visualization engine

Having decided to present algorithms as executable Python code, we
will now address the question of how to provide a suitable and safe
environment for executing algorithms and visualizing their actions.

The algorithm engine, which consists mainly of a sub-class of Python’s
standard library debugger class, is the core of the visualization engine.
Together with the standard library’s exec-function, it provides the func-
tionality to execute Python code from within an application, while giving
the user control over the execution and allowing for reactions to events
such as proceeding to the next line or calling functions.

To protect the main application from erroneous code in algorithms,
we supply explicit private local and global name-spaces for algorithms.
Name-spaces are implemented as dictionaries containing (key,value)-pairs.
Objects in the main application are made available to algorithms on a
need-to-know basis. Since graphs are often modified by algorithms, pri-
vate copies are inserted into the name-space; for all other objects ref-
erences are used. Also, for reasons of convenience, standardized shorter
variable names for graphs and the ‘animator’, the visualization engine,
are supplied.

Algorithms are stored in two files. In addition to the actual algorithm,
the *.alg-file, containing the visible algorithm code, there is the so-called
prolog, the *.pro-file. The prolog will be read and executed without user
control before the algorithm is started.

The prolog serves a number of purposes. As we will discuss in detail
in the next section, so-called animated data-structures (ADS) are used
for coding the visualization. The visualization engine acts as a media-
tor between the ADSs ‘living’ in the algorithm engine and the object,
in Gato always the GraphDisplay, providing the visual feedback. The
ADSs are usually implemented in Gato. To facilitate rapid development
and easy adaption, ADSs can also be implemented in the prolog. This
supports changes to an ADS without touching Gato’s code and without
even leaving Gato.

The prolog also contains information about the algorithm, e.g., the
problem it addresses, its history, complexity, and cues regarding its vi-
sualization, e.g. meaning of colors, in form of HTML-code for Gato’s
built-in simple HTML-viewer. It provides information to the visualiza-
tion engine about suggested or default breakpoints and so-called inter-
active algorithm code lines. These are code-lines where user interaction

10 A. Schliep and W. Hochstattler

‘ About Box H G edAbout Box
Al gori t hnDebugger

Ani mat edEdgeSet

Ani mat edNei ghbor hood
Ani mat edPot ent i al

Ani nat edSi gnl ndi cat or
Ani mat edVer t exSet

z
3

‘BI i nki ngCont ai ner W apper Hmnt ai ner W apper

‘BI i nki ngNei ghbor hood H Bl i nki ngTr ackLast Nei ghbor hood
Conponent Maker

‘EdgeLaheI ing H EdgeWei ght ‘

Edi t Wi ght sDi al

o
Q

FI owW apper

[@aph |—{suba aph }— Ani mat edSubGraph |
G aphEdi t or Topl evel ‘
Fl owG aphl nf or mer H Resi dual G aphl nf or mer ‘
Wi ght edG aphl nf or mer H MSTG aphl nf or ner ‘

G aphEdi tor

G aphl nf or ner

HTM.W i ter

| mageCache
Met hodLogger
M/HTM_Par ser

‘Qjeue ’—{ Ani mat edVer t exQueue ‘
‘%ndom zeEdgeWei ght sDi al og ‘

‘ Spl ashScreen H G edSpl ashScreen ‘
‘St ack ’—{ Ani mat edVer t exSt ack ‘

Ani mat edPr edecessor
Ani mat edVer t exLabel i ng

Bl i nki ngVer t exLabel i ng ‘

Ver t exVeéi ght

Vi si bl eVert exLabel i ng

‘VertexLabel ing

Fig.6. A diagram showing the classes used in Gato. The shallow class hierar-
chy is due to the rich standard library.

Developing Gato and CATBox 11

B R B T B B R B B B T A R i i b vt
#
This is part of CATBox (Combinatorial Algorithm Toolboz)

#
B B R R R R R B R R

Options
breakpoints = [9]

interactive = [4]

graphDisplays = 1

about = "”’<HTML>

<HEAD>

< TITLE> Breadth-First-Search< /TITLE>
</HEAD>

<BODY>

</BODY></HTML>

NNy

pickCallback = lambda v, a=A: A.SetVertexAnnotation(v,”source”)
PickVertex = lambda f=pickCallback: self.PickVertex(1,None,f)
Neighborhood = lambda v,a=A,g=G: AnimatedNeighborhood(a,g,v)
Vertices = G.vertices

visited = AnimatedVertexLabeling(A)

Q = AnimatedVertexQueue(A)

End-of BFS.pro

Fig.7. An example of the code in the prolog, BFS.pro, corresponding to the
algorithm code in algorithm BFS.alg as shown in Fig. 5. The additional com-
mands set default values and visual feedback for interactively picking the root
of the BFS-tree. Header and HTML-code describing the algorithm are edited
for brevity.

12 A. Schliep and W. Hochstattler

such as choosing a vertex or an edge is required. Other uses are the de-
finition of auxiliary data-structures and functions, which are irrelevant
to the understanding of the algorithm in question. Just as in the case of
the name-spaces, easier and shorter variable names can also be defined
in the prolog. The renaming is mainly done to make the initial learning
step as easy as possible for students; often it consists of replacements of
the form ‘self.G.Vertices’ by ‘V’.

Visualization Engine
library of ADSs mediator for GraphDispaly

A

Algorithm Engine

Algorithm ADS

Animated Vertex Queue
000 def Append(self, v):
visited[w] = 1 | Jo*P---

Q.Append (w) o SetVertexColor (v, cVisited)
.. self.append(v)

A

A

-- - III)

Algorithm Prolog
File File

Fig. 8. A schematic view of the visualization engine and the objects involved
in visualizing an algorithm. Dashed lines designate a control relation and solid
lines data-flow.

4 Rule-based visualization

Consistency and an appropriate definition of interesting events, i.e.,
events that are crucial with regard to function of an algorithm, are of
utmost importance for an educationally successful visualization. When
sufficient care is taken that the implementation of the algorithm, no
matter if it is written in pseudo-code or executable code as Gato’s, cor-
responds in all details to the theoretical, mathematical idea behind it,
those interesting events can always be defined in terms of changes to the
data-structures used in algorithms. If not, our experience shows that this
is an indication of divergence between theory and implementation.

Developing Gato and CATBox 13

A tight coupling of the visualization commands to changes to the
data-structures yields a high level of consistency. We achieved the cou-
pling by using the animated data-structures (ADS) mentioned in the
previous section. ADSs are data-structures typically used in graph algo-
rithms, e.g., queues, stacks, lists, and arrays with vertices as an index.
They provide visualization whenever methods changing the contents of
those ADSs are invoked. They can be refined to obtain a specific visual
effect by the choice of instantiation parameters or by sub-classing. Im-
plementing rules for the visualization in this way had several advantages.
It is technically very easy to realize, assures a a high level of maintain-
ability, it provides a high degree of fine-level control, and it enforces an
exactly defined choice of interesting events and their visual feedback.

In the following, we demonstrate rule-based visualization using Dijk-
stra’s algorithm as an example. Dijkstra’s algorithm is a label-setting-
algorithm for solving the shortest-path-problem [1] from one fixed root.
It works by processing all vertices in a graph basically in a breadth-first-
search manner while setting labels, which represent the distance from
the root and the predecessor on the shortest path to the root for each
vertex.

For Dijkstra’s algorithm, vertices fall into four distinct categories:

. Vertices not yet ‘seen’,

. vertices ‘seen’, but not yet processed,
. the active vertex, and

. processed vertices.

S N —

During the run-time of the algorithm, vertices proceed through the dif-
ferent categories. They are never re-processed or become unseen. The
software can determine which category a vertex belongs to by checking
its status with regard to the central data-structure in the algorithm, a
priority queue. The theoretical categories above correspond to the fol-
lowing implementational ones:

. Vertices, which are not in the queue,

. vertices in the queue,

. the vertex most recently removed from the queue,

. vertices, but the most recent one, removed from the queue.

R

Transitions between the different categories are tied to changes to the
data-structure. A vertex becomes seen and is appended to the queue,
when transitioning from category 1 to 2. The transition from 2 to 3
happens, when a vertex becomes ‘active’; that is, when it 1s removed
from the queue. Finally, an active vertex is moved into category 4 as
soon, as another vertex is removed from the queue.

The categories can hence be easily visualized with the help of an
ADS called AnimatedVertexQueue. Initially, all vertices are in category
1 and displayed with a fixed color. The method for appending a vertex
to the queue also changes the color of a vertex, as does the removing of
a vertex, which promotes the vertex to active status. The queue keeps

14 A. Schliep and W. Hochstattler

track of the active vertex, retiring it to the appropriate color for category
4, when the next vertex is removed from it.

The second component in the visualization concerns the processing
step. Here, all the neighbors of the active vertex are visited; i.e., the
edge connecting the active vertex with its neighbor is traversed and
the distance label of a neighbor is inspected. Here we can use an ADS
called AnimatedNeighborhood, which creates a temporary highlighting
of neighbors and edges, as the algorithm iterates over the complete neigh-
borhood. Finally, the rooted shortest path tree is highlighted through use
of an AnimatedPredecessor-ADS as the array for storing the predeces-
sor label.

Rule-based visualization enables students to experiment with algo-
rithms. They can either change existing algorithms, or by using the ADSs
supplied, obtain visualizations for algorithms implemented from scratch
with little additional effort. This is an important factor for the teaching
effectiveness of algorithm visualizations [24].

Even the authors sometimes obtained surprising insights already for
very simple algorithms. It seems to be an accepted fact, that Breadth-
First-Search and Depth-First-Search (DFS) are basically the same al-
gorithm, just using a queue in the former and a stack in the latter al-
gorithm. During implementation we were rather surprised, when code
obtained by the exchange of the data-structure in a straight-forward
BFS-implementation looked ‘strange’ in the visualization. As it turns
out, a somewhat artificial implementation is necessary to accomodate
such an equivalence, illustrating slight differences between theory and
implementation of an algorithm.

5 Software Engineering

Eztreme programming [11] has become a very popular programming
methodology over the last four years. It formalizes the processes which
have been successfully used to create large software systems and is in
some aspects an antipode to the classical software engineering techniques
with their divide-and-conquer and “build up from building blocks” ap-
proaches. One fundamental difference is the acknowledgement of the fact
that software, compared to, say, a bridge is a rapidly moving target.

We will just briefly mention the aspects of extreme programming that
are most relevant to the development of Gato and software development
in an academical environment in general.

— Integrate often, release frequently. We tried to have a working ver-
sion of Gato at all times. Modules, which were developed indepen-
dently, were integrated into the main application daily. The applica-
tion would often miss parts of the functionality — the very first im-
plementation could not display graphs, but ‘visualized’ color changes
to vertices or edges as text output — but nevertheless work, allowing
for hands-on experimentation as a basis for further design decisions.

Developing Gato and CATBox 15

— Add functionality as needed. A typical error in object-oriented devel-
opment is to identify foundation classes, and implement those in the
fullest generality possible, neverminding the actual need of the ap-
plication at hand. Similarly, it is tempting to address all fathomable
uses in application design. A restriction to what is needed now speeds
up the development process and increases software quality. E.g., we
choose to restrict the graphical display of graphs.

— Simplicity. Implement the most simple and not the fastest or most
elegant solution. Optimization for speed should be done at the very
end, when the application is working without errors.

— Spike solutions and frequent re-factorization. Spike solutions estab-
lish the feasibility of solving a technical problem by a sample im-
plementation, separate from the main application. Introducing spike
solutions to the main code basis and adding additional features lead
to general code growth. Re-factorization, e.g., moving code to sep-
arate classes, adding new methods or classes for often-used tasks,
was used to clean the code basis. For this tasks, the small number
of LOCs helped tremendously.

6 Licensing Issues

We chose to release the different components of our project under differ-
ent licenses, cf. Fig. 1. Gato and Gred are published under the Library
GNU Public License (LGPL) for the following reasons: Our work has
only been possible due to the large number of people contributing qual-
ity work to Python and Tk. We feel obliged to return this favor to the
community in the most extensive way possible. A point in support: Gato
already has been used for the development of ‘AsIF — An Authoring
System for Interactive Fiction’ [3].

As we have seen from requests for updates and bug-fixes to a long-
outdated CATBox-predecessor, software and especially educational soft-
ware seems to have a life of its own and a life-span much larger than
anticipated. From our point of view, the only way to address the issue of
long-term, say, decades of, software support is to put i1t into the hands
of the users.

Freedom to re-use your own code in further work can only be achieved
when your code 1s free and protected through a water-proof license. As
CATBox shows, commercial interests, in this case those of Springer Ver-
lag, protected through copyrights can easily co-exist with free software,
to the benefit of both parties.

On a more practical note, besides attracting a larger user base than
commercial code, thus increasing the number of people exercising the
code, free software also attracts other developers. A free exchange on a
technical level regarding design issues is possible and very helpful espe-
cially in an academic environment with limited project group size.

16 A. Schliep and W. Hochstattler

7 Evaluation

So far, no formal evaluation studies have been done for Gato and CAT-
Box. We do however have a range of experiences using parts of our course
in a number of different settings, ranging from second-year business in-
formation majors to graduate level mathematics students.

A typical teaching scenario used Gato in the following form: At first,
the algorithm was run to completion to give an overview. Then, usu-
ally stepping through the algorithm’s commands one by one, the finer
details were explained. Worst-case instances provided a very vivid pic-
ture illustrating the underlying theory. Students could use Gato outside
the class-room on their own, and were encouraged to experiment with
different instances to intesify their understanding.

In the advanced graduate level course mathematics students were
offered extra credit for problems requiring implementation and visual-
ization of non-trivial algorithms from scratch without tutoring in Gato
or Python. We observed that the students in the class working on these
optional problems were usually both more advanced and had prior pro-
gramming experience. Their comments, gathered in informal interviews,
indicated that they found the problems very challenging, but also the
results very rewarding. For large-scale use in the classroom, we suggest
to employ teaching-assistants to provide support for programming prob-
lems.

8 Outlook

There are several possible areas of expansion. The graphical side of the vi-
sualization has so far been very ‘schlicht’: edges are always lines, vertices
always circles and vertex names are simply numbers. To help non-math
or computer science majors to understand the graph model as a correct
formalization of an application problem from their field, the inclusion of
visual cues might be beneficial. Imagine building a phylogenetic tree in
Biology and, say, displaying pictures of the species as the vertices in the
tree.

Also, to address difficulties of understanding basic data-structures
such as e.g., lists, queues and stacks, graphical inspectors are a viable
option.

We can and will also extend the areas to which we apply Gato by ad-
dressing graph-based stochastic models. As a matter of fact, for Hidden-
Markov-Models, the first author’s main area of work, a specialized edi-
tor based on Gred, is under development [13]. This project will include
an interface to a HMM-library developed at the ZAIK/ZPR providing
an environment for researching and training HMMs. Markov Models,
Bayesian networks etc. can also be addressed.

Developing Gato and CATBox 17

9 Acknowledgements

CATBox and Gato would not exist without Achim Bachem, who inspired
the original idea. We are also very grateful to Sandor Fekete and Cristoph
Moll, who contributed ideas and aided through helpful discussions in the
design process.

Thanks to Torsten Pattberg, who put the finishing touches on the
proof-of-concept algorithm implementations and implemented and visu-
alized a lot of the algorithms included in CATBox from scratch.

Thanks also to Ramazan Buzdemir and Achim Gaedke, recent addi-
tions to our CATBox and Gato team. Ramazan Buzdemir implemented
the graph layout algorithms in Gred and Achim Gaedke is working on
Gred and its extension to an editor for Hidden-Markov-Models.

References

1. Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Network
Flows. Theory, Algorithms and Applications. Prentice Hall, Englewood
Cliffs, NJ, 1993.

2. Alice - free, easy, interactive 3D graphics for the WWW. URL
http://www.alice.org/.

3. Aslf - an authoring system for interactive fiction. URL
http://www.videon.wave.ca/ ~ krussell /asif/.

4. Marc H. Brown and Robert Sedgewick. A system for algorithm animation.
In Proceedings of ACM SIGGRAPH ’8}, pages 177-186, July 1984.

5. Marc H. Brown and Robert Sedgewick. Interesting events. In John Stasko,
John Domingue, Marc H. Brown, and Blaine A. Price, editors, Software
Visualization. Programming as a Multimedia Fzperience, Cambridge, MA,
1998. The MIT Press.

6. CATBox - Combinatorial Algorithm Toolbox. URL http://www.zpr.uni-
koeln.de/ ~ catbox.

7. Computer programming for everybody. URL
http://www.python.org/cpde/.

8. P. Crescenzi, C. Demetrescu, 1. Finocchi, and R. Petreschi. LEONARDO:
a software visualization system. In Proceedings of the 1-st Workshop on
Algorithm Engineering (WAE’97), pages 146-155, 1997.

9. EDU-Sig: Python in education. URL http://www.python.org/sigs/edu-
sig/.

10. Jeffrey Elkner. Using Python in a high school computer science
program. In Proceedings of the FEighth International Python Con-
ference. PSA, 2000. URL http://www.python.org/workshops/2000-
01/proceedings/papers/elkner/py YHS.html.

11. Extreme programming: A gentle introduction. URL
http://www.extremeprogramming.org.

12. Gato - Graph Animation Toolbox. URL http://www.zpr.uni-
koeln.de/ ~ gato.

13. A hidden-markov-model editor. URL http://www.zpr.uni-

koeln.de/~ hmm.
14. Winfried Hochstattler. Algorithmische Mathematik WS 98/99. URL
http://www.zpr.Uni-Koeln.DE/ AlgoMat98_99/.

18

15.

16.
17.
18.
19.
20.

21.
22.

23.

24.

25.

26.

27.

28.

A. Schliep and W. Hochstattler

Scott E. Hudson and John T. Stasko. Animation support in a user in-
terface toolkit: Flexible, robust and reusable abstractions. In Proceedings
of the 1993 ACM Symposium on User Interface Software and Technology,
Atlanta, GA, pages 57-67. ACM, November 1993.

The Swing connection. URL http://java.sun.com /products/jfc/tsc/index.html.
JPython home. URL http://www.jpython.org.

Bernd Kokavecz. Mit leichten Schritten in die objektorientierte Program-
mierung. URL http://www.b.shuttle.de/b/humboldt-os/python/.
Leonardo: A C programming environment for reversible execution
and software visualization. URL http://www.dis.uniromal.it/ deme-
tres/Leonardo/.

Python language website. URL http://www.python.org.

Python library reference. URL http://www.python.org/doc/current /lib/lib.html.
John Stasko, John Domingue, Marg H. Brown, and Blaine A. Price, ed-
itors. Software Visualization. Programming as a Multimedia Ezxperience.
The MIT Press, Cambridge, MA, 1998.

John T. Stasko. The TANGO algorithm animation system. Technical
Report CS-88-20, Department of Computer Science, Brown University,
December 1988.

John T. Stasko. Using student-built algorithm animations as learning aids.
SIGCSEB: SIGCSE Bulletin (ACM Special Interest Group on Computer
Science Education), 29, 1997.

Andy Tai. The GUI toolkit, framework page. URL
http://www.geocities.com/SiliconValley/Vista/7184/guitool.html.

Tcl/tk. URL http://www.tcltk.com.

Guido van Rossum and Jr. Fred L. Drake. Extend-
ing and embedding the Python interpreter. URL
http://www.python.org/doc/current /ext/ext.html.

XVT. URL http://www.xvt.com/.

