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Abstract

DNA microarrays are a valuable tool for massively
parallel DNA-DNA hybridization experiments. Currently,
most applications rely on the existence of sequence-specific
oligonucleotide probes. In large families of closely re-
lated target sequences, such as different virus subtypes, the
high degree of similarity often makes it impossible to find a
unique probe for every target. Fortunately, this is unneces-
sary.

We propose a microarray design methodology based on
a group testing approach. While probes might bind to multi-
ple targets simultaneously, a properly chosen probe set can
still unambiguously distinguish the presence of one target
set from the presence of a different target set. Our method
is the first one that explicitly takes cross-hybridization and
experimental errors into account while accommodating sev-
eral targets.

The approach consists of three steps: (1) Pre-selection of
probe candidates, (2) Generation of a suitable group testing
design, and (3) Decoding of hybridization results to infer
presence or absence of individual targets.

Our results show that this approach is very promising,
even for challenging data sets and experimental error rates
of up to 5%. On a data set of 28S rDNA sequences we
were able to identify 660 sequences, a substantial improve-
ment over a prior approach using unique probes which only
identified 408 sequences.

1. Introduction

DNA microarrays are a widely used tool for performing
large numbers of DNA-DNA hybridization experiments in
parallel. We distinguish two principal kinds of applications:

1. Quantitative analysis of expression levels of individual
genes, measured by quantifying the hybridization lev-
els of gene-specific oligonucleotide probes. Prominent
applications are the comparison of cell samples from
different tissues and computational diagnostics.

2. Qualitative analysis of an unknown sample; most no-
tably, establishing presence or absence of target se-
quences in a sample by observing appropriate hy-
bridization reactions. Examples from biology, ecol-
ogy, biotechnology and medicine are identification of
micro-bacterial organisms, detection of contamination
of biotechnological products, or identification of viral
subtypes.

To measure the expression level in the former, quanti-
tative setting as precisely as possible,unique probes (also
called gene-specific probes or signature oligos) are de
rigeur. A probe is called unique if, under specified experi-
mental conditions such as temperature and salt concentra-
tion, it hybridizes to its intended target and (almost cer-
tainly) does not hybridize to any other target that might be
expressed in the sample. The selection of unique probes
is an interesting problem, and several methods of varying
speed and accuracy have been proposed (e.g., [8, 9, 11, 13]).

In large families of closely related target sequences, the
high degree of similarity makes it impossible to find a
unique probe for every target — given the probe length and
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melting temperature constraints. This issue is hard to re-
solve in a setting where unique probes are called for. Most
authors suggest either clustering or leaving out target se-
quences for which no probe can be found, or increasing
oligo length. The latter approach is probably the best when
quantitative measurements are essential.

We focus not on quantification, but on robust presence
or absence calls, such as in virus subtyping. In this case,
unique probes are not a necessity, and we have many more
liberties in designing the chip. We propose astatistical
group testing approach which we will elaborate upon in the
sequel.

Group Testing. Group testing is a general procedure ap-
plicable whenever a large population of individuals has to
be subjected to the same test. A general introduction to the
field is given in [7]. The idea is to group objects and test
groups instead of individuals. A group tests positive when
at least one individual within the group tests positive. Ev-
ery experiment involving group testing requires adesign,
i.e., a definition of the groups (every individual can belong
to many groups), and an correspondingdecoding procedure
to infer the status of individuals from the status of groups.
When we select the groups a priori we have anon-adaptive
group test. In contrast, inadaptive group testing the groups
are chosen iteratively, using the results from previous tests
to guide selection of groups for the next iteration. When
the test results are exact, that is error-free, we speak about
combinatorial group testing; in the presence of errors one
has the harderstatistical variant of the problem.

Group testing is most successful in general, whenever
only few individuals are expected to test positive, because
we can use large groups and hence need only a few tests
to infer the status of every individual. For example, when
it is known that there is at most a single positive individ-
ual amongn, �log2 n� tests suffice to determine its identity.
When the proportion of positive individuals is large, noth-
ing is to be gained in comparison to individual testing.

Successful applications are from medical diagnostics, in-
cluding screening draftees for syphilis during World War II,
the first recorded application [7], and from industrial qual-
ity assurance. In molecular biology, group testing has been
applied to the problem of screening DNA clone libraries for
sequence tagged sites to aid in the construction of physical
maps [1, 5, 6].

Group Testing Issues for Microarrays. In the microar-
ray setting we propose to use a statistical, non-adaptive
group testing scheme. The target sequences we intend to
identify correspond to individuals. Potential groups, which
can be freely chosen in the general setting, are specified here
by a probe which hybridizes to a set of target sequences.
The goal is to devise a group testing design which cov-

ers each target with a certain number of probes and allows
identification of several targets simultaneously while using
a reasonably small total number of probes. We encounter
several novelties that are not present in other group testing
settings.

� Constrained assignment of individuals to groups. In
contrast to a medical screening setting, we cannot ar-
bitrarily assign individuals to groups. Groups (sets of
target sequences) are always defined by an oligo that
occurs in all sequences of the group. This restriction
is the most important difference between DNA array
group testing and “classical” group testing designs.

� Cross-hybridization. Even though we allow non-
unique probes, the cross-hybridization problem does
not disappear. Assume that a probep occurs in all
target sequences in a setT , and also approximately
(but not exactly) matches another targets �� T . The
hybridization behavior ofs with respect top depends
on many parameters and will vary from experiment to
experiment. To keep error rates as low as possible, it
is preferable to discard probes whose hybridization be-
havior is unclear.

� Comparatively high error rates. Even if we avoid po-
tential cross-hybridization problems, false positive (a
probe giving a signal when it should not) and false
negative errors (a probing not showing a signal when
it should) with rates of up to 5% must be anticipated.

� Moving Targets. In reality, target sequences are not
static objects. They undergo mutations, recombine, or
are altered in other ways. Covering a target with many
probes adds robustness to the target identification; al-
lowing these probes to be non-unique helps to keep the
required probe number low.

These difficulties and their practical importance in real-
world applications, such as virus subtyping, make the de-
sign of group test oligo arrays an interesting challenge.
While previous work has addressed the use of non-unique
probes and group testing (e.g., [3, 15]), none of it seems to
take cross-hybridization and error tolerance explicitly into
account, or it simplifies the problem unrealistically by as-
suming at most one target sequence (positive individual) to
be present.

Our approach to deal with the above issues is as follows
(cf. Figure 1). First, we pre-select suitable probe candi-
dates, where the usual constraints for oligo design apply
(see Section 2.1). From these candidates, we generate a
group testing design, i.e., we pick a subset of probes that
allows discrimination between as many (small-sized) target
sets as possible. Note that in theory, adding a probe to a
design never decreases the design’s ability to separate two
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target sets. Therefore, usingall candidates guarantees the
best possible separation properties of the design (the design
quality is naturally limited by the properties of the best can-
didate probes). In practice, however, the number of can-
didate probes is very large, and several probes might hy-
bridize to the same target sets. Therefore adding a probe
does not necessarily contribute new information, and we
would waste spots on the chip with uninformative oligos.
Selecting a smaller design may allow use of a smaller chip
and considerable reduction of cost. Furthermore, in prac-
tice, candidates are ranked according to quality (see the pre-
vious section), and we want to include lower-quality probes
only when absolutely necessary in order to keep the noise
level for the decoding procedure as low as possible. In short,
while a small design is preferable, it would be misleading to
minimize the number of probes as the only objective. Our
heuristic solution is described in Section 2.2.

Our decoding procedure to infer the presence of tar-
get sequences uses a Bayesian framework. It is based on
Monte Carlo Markov Chain sampling and explicitly allows
false positive and false negative experimental errors (Sec-
tion 2.3). We evaluate the method on a test set of 660 28S
rDNA sequences in Section 3, and a concluding discussion
can be found in Section 4.

2. Methods

We use the following notation. Them target sequences
are denoted byti (1� i � m), the initialn0 probe candidates
by p�k (1� k � n0), and the finaln � n0 probes selected for
the design byp j (1 � j � n). Thus, everyp j is equal to
somep�k.

We define a target-candidate-incidence matrixH by
Hik :� 1 if target ti hybridizes to probe candidatep�k, and
Hik :� 0 otherwise. The design matrixD is a sub-matrix
of H, where columns that correspond to candidates not in-
cluded in the final design have been removed. SoDi j � 1 if
targetti hybridizes to the selected probep j.

The set of probes hybridizing to targetti, i.e., the index
set of nonzero entries in rowi of the incidence matrixD
(or H), is denoted byP�i�. Similarly, T � j� denotes the set
of target sequences probep j hybridizes to, or equivalently,
the index set of nonzero entries in columnj of D.

2.1. Computing Probe Candidates

As mentioned above, targets cannot be arbitrarily as-
signed to groups. Instead, a potential target groupT only
exists if there is a probe that binds to all — and exclu-
sively those — sequences inT . Additionally, not every
probe can be used to define a group because all candidate
probes must obey the typical restrictions also encountered
in unique oligo selection. For instance, all probes should

p1' p2' p3' p4' p5' p6'
t1 • • •
t2 • • • • •
t3 • •
t4 • • • •

p1 p2 p3 p4
t1 • •
t2 • • • •
t3 •
t4 • •

Choosing group
testing design

Testing probes
on chip

spot intensities

Posterior for presence of
each target in sample

Decoding

H

D

Figure 1. An overview of the method. In the
target-and-probe hybridization matrix H (top)
a dot in row i and column k indicates that
probe candidate k binds to target sequence
i. A group testing design D is a subset of
columns of H (the candidate probes p�k se-
lected are displayed in bold face). The hy-
bridization experiment allows us to measure
spot intensities for each probe selected for D.
The information in D about which targets hy-
bridize to each probe is used to identify the
targets present in the sample in the decoding
step.
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ideally exhibit the same hybridization affinity, expressed
as the Gibbs free energy∆G of the oligo-target-duplex, at
a given temperature and salt concentration. Furthermore,
the probes should not be self-complementary and not cross-
hybridize to targets outside their intended target set. The
last issue is essential for robust designs.

Our candidate selection is based on an extended and
modified version of the longest common factor method de-
scribed in [13]. Thelongest common factor length lcf�s� t�
of two stringss andt is the maximum length of a substring
that occurs in boths andt. The length of a stringo is writ-
ten as�o�. For each candidate oligoo of geneg, and for
each length� � �o�, we define thelongest common factor
statistics lcfs�o� �� as the number of genesg� �� g containing
an oligoo� with lcf�o�o�� � �. When lcfs�o� �� is nonzero
for some� close to�o� or exceeds the allowed maximal tar-
get set size for� � �o�, the oligo is at risk of unintended
cross-hybridization and excluded from further considera-
tion. The basic longest common factor approach is very
fast, but it overlooks that a GC-binding is more stable than
an AT-binding. Recently, themethod was extended to not
only compute the length difference but also to estimate the
difference in Gibbs free energy between the perfect match
probe-target duplex and potential secondary binding sites
(approximate matches). This permits a more accurate esti-
mation of cross-hybridization risk. Details are given in [14].

As a rule of thumb for 20-mers, a change of 1 bp in match
length corresponds to a change of 1�1 kcal/mol in the du-
plex’s free energy, but for individual oligos, these quantities
vary considerably depending on sequence composition. A
20-mer oligo is considered as a suitable design candidate
for the next step when it occurs as an exact match in at most
40 target sequences and the estimated Gibbs free energy dif-
ferenceδ to the best approximate match is higher than 5�5
kcal/mol at 45ÆC and 0�075 M NaCl.

We rank the list of candidates according to the value of
δ (higher is better) and compute the target-candidate hy-
bridization matrixH.

2.2. Finding a Good Design

This section describes a fast heuristic to find a good
group testing designD, i.e., to select columns of the full
target-candidate hybridization matrix. We want to be able
to distinguish between most (ideally all) target sets whose
size is not too large.

Definition 1 (d-separability of target sets). Let S be a set
of target sequences. We say that a probep hybridizes to
the set S when p hybridizes to at least one target inS. By
P�S� we denote the set of all probes hybridizing toS, i.e.,
P�S� :�

�
ti�S P�ti�.

Now let S andT be two different target sets. Probep
separates S andT if p � P�S�∆P�T �, i.e., if p hybridizes

to eitherS or T , but not to both (∆ denotes symmetric set
difference).

The target setsS andT ared-separable if at leastd probes
separate them, i.e., if�P�S�∆P�T �� � d.

As an example, assume we haved unique probes for each
target. Then two target setsS and T with �S∆T � � c are
�c � d�-separable, because the signal ofd different probes
differs for each target inS∆T . Of course, we do not gener-
ally have unique oligos to choose from and are restricted to
the available candidate probes.

A call to the following procedure SEPARATE�S�T�d� en-
suresd-separation ofS andT , or produces a warning if the
candidate set allows onlyd�-separation for somed� � d.

SEPARATE�S�T�d�
Add oligos to the current partial design D to d-separate
S and T
1. LetC :� P�S�∆P�T �
2. PartitionC into the disjoint unionC �CD 	C�,

whereCD :�C
D, andC� contains the
separating oligos not yet included inD

3. If �CD� � d return (nothing to do).
4. If �C��� �d��CD�� warn

“Can only��CD�� �C���-separateS andT ”
5. Addd��CD� highest-quality probes fromC� to D

Because of the many different considerations mentioned
in the introduction, formulating the design problem as a
simple optimization problem without sacrificing realism is
difficult. Therefore we use the following common-sense ap-
proach to generate a reasonably good and small design.

1. We add probes until every target is covered by at
least d oligos, i.e., every singleton target set�ti

is d-separated from the empty set�
, by calling
SEPARATE��ti
��
�d� for all i � 1� � � � �m.

2. We ensure that all pairs of targets are separated by at
leastd oligos by calling SEPARATE��ti
��ti�
�d� for
all 1� i � i� � m.

3. Since there are usually several hundred targets, it
would take too much time to systematically ensured-
separation for all larger target sets up to a certain car-
dinality. Instead, we randomly pick a numberN of
additional pairs of target setsS andT andd-separate
them by a calling SEPARATE�S�T�d�. The size distri-
bution of the sets we pick follows the distribution of
the number of targets present in a typical sample (cf.
the cardinality prior in Sec. 2.3). The parameterN can
be chosen according to the time available to refine the
design. As an example, this step took 5 minutes for
600 targets and 14000 candidates, usingN � 500000.
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2.3. Decoding

Once we have performed the hybridization experiment,
we are faced with the problem of inferring which targets
were present in the sample using the results for the different
probes. Following [10], we use a Bayesian approach for the
decoding.

Formally, we are givenD and the result vectorr �
�r1� � � � �rn� for the probesp1� � � � � pn, where we assume
r j � �0�1
.

We consider the posterior probability that a setT of tar-
gets constitutes all targets present in a sample, given the
result vectorr. Using Bayes’ formula, we can write this
probability as

��T �r� �
��r�T � � ��T �

��r�
�

A likelihood model. Assuming that all and only those tar-
gets from a setT are present in a sample, what is the prob-
ability of observing a result vectorr? Intuitively, if probe
p j does not hybridize to any of the targets inT , the result
r j for that probe should be negative. Similarly, if another
pk hybridizes to one or several of the targets inT we expect
rk � 1. Given the typical error rates of DNA chip experi-
ments, we have to assume that the probability of observing
a specific result merely correlates to the number of targets
from T a probe binds to. Another assumption we make is
that the observed results are independent between probes.
This allows us to write the likelihood as

��r�T � �∏
p j

f
�

r j� �T � j�
T �
�
�

where the product is over all probesp j and�T � j�
T � de-
notes the number of targets the probep j hybridizes to which
also are contained in the setT . Note thatf �0�0� is simply
one minus the false positive error rate, denotedfp, for a hy-
bridization reaction in one spot and that the sumΣk�1 f �0�k�
is the corresponding false negative error rate, denotedfn.
We only distinguish between the presence of none respec-
tively one or more targets a probe hybridizes to in the sam-
ple. Hence, we setf �0�0� � 1�0� fp, f �0�� 1� � fn,
f �1�0� � fp and f �1�� 1� � 1�0� fn. These guesses should
be replaced with observed error rates, whenever possible.

Choosing A Prior. We formulate a Bayesian prior for the
presence of a group of targets in the sample. Generally, one
assigns a probability to every setT from 2�1�����m�, reflecting
the prior belief that all targets inT and no others are found
in the sample. We assume independence between targets
and, furthermore, that there are only two main contributing
factors: the prevalence of each particular targetti in samples

containing at least one target is denotedfi, and the distribu-
tion describing the likelihood of finding a particular number
of different targets in one sample. For example, HIV infec-
tions with more than three subtypes are very rare and — at
least in the US — in a vast majority of infected individuals
exactly one subtype is detectable [4]. The prior probability
of observingk different targets in one sample will be de-
noted byck. Combining the two factors we can define a
quantity proportional to the prior we want. LetT denote the
set of targets, then

��T � ∝ c�T � � ∏
ti�T

fi ∏
ti ��T

�1� fi� �

An uninformed prior on the prevalence frequencies, that is
f1 � � � �� fn, yields the the binomial distribution neglecting
theck terms. In cases in which sufficient data is available,
a more refined statistical model not limited by our assump-
tions should be formulated to obtain better decoding perfor-
mance.

The Posteriors. The fact that��r� is not readily available
precludes us from computing the posterior in closed form.
Moreover, what we are really interested in are marginals
such as��t present in sample�r�. These marginals can be
expressed in terms of the posterior for a set by summing
over all setsT which contain the specific targett. That is,

��t present in sample�r� ∝ Σ T :t�T��T �r��

Thus, an exact computation requires work exponential in
the number of targets.

Markov Chain Monte Carlo (MCMC). One way to
cope with this problem is to use a Monte Carlo approach.
Sampling a sufficient number of setsTk according to��T �r�
allows to estimate the marginal��t present in sample�r� as
the relative frequency with whicht is contained in the sets
Tk. This requires sampling from��T �r�, for which Gibbs
sampling suffices. Gibbs sampling allows construction of a
Markov chain over the space of all setsT , that is 2�1�����m�,
which has��T �r� as its stationary distribution.

In the Gibbs sampler, the probability of changing from
someTk to Tk∆�ti
 for some probep equals

1
1���Tk�r����Tk∆�ti
�r�

�

Note that this suffices to obtain convergence in distribution
to ��Tk�r� [2, pp. 353-354]. By use of Bayes’ Theorem and
the model distributions defined earlier, it follows that the
fraction��Tk�r����Tk∆�ti
�r� equals

c�Tk �
�1� fi�

c�Tk��1 fi
� ∏

p j�P�i�

f �r j � �T � j�
Tk��

f �r j � �T � j�
Tk��1�
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if ti �� Tk and, forti � Tk,

c�Tk ��1 fi

c
�Tk�

�1� fi�
� ∏

p j�P�i�

f �r j � �T � j�
Tk��

f �r j � �T � j�
Tk��1�

If f ��� �� is never 0 nor 1, the constructed Markov chain is
aperiodic and irreducible, which guarantees convergence to
the unique stationary distribution. Once stationarity is ex-
hibited, the statesTk the chain visits can be used to compute
the relative frequencies of the targetsti, which are estima-
tors for the marginals��ti present in sample�r�.

Implementation. We adapted the Markov Chain Pool de-
coder (MCPD) [16] to the problem at hand. As it is routine
for MCMC methods, the user can select a number of warm-
up steps and also the number of steps between states which
are used for computation of the marginals. We checked the
convergence of the MCMC method by performing 100 runs
each for 100 sets of artificial results and computing the stan-
dard deviation of the marginal probabilities for a number of
time points. The artificial results were sets of targets cho-
sen according to the prior; each run was started from a ran-
domly selected initial state. Inspection of the convergence
data guided our choice of using 5,000 warm-up and 50,000
total steps. The rate of convergence of the marginals seemed
not to depend on the number of steps in-between samples
used (not shown), hence we simply used every state visited
as a sample. On an AMD Athlon XP 2100 Linux machine,
a decoding run needs about 15 seconds CPU time.

Additionally, we are able to use confirmed external infor-
mation, say from an alternative testing method or infection
history, about presence or absence of targets in a sample.
We can compute marginals for the presence of individual
targetsconditioned on this external information — i.e., con-
ditioned on specified targets present or absent — as follows:
targets present (absent) are always included (exluded) from
the state of the MCMC. Furthermore, this can be used to
re-run the decoding if confirmatory tests on the targets with
highest marginal probabilities are performed. Even with-
out further tests, re-running the decoding with a selection
of the targets with highest marginal probabilities gives an
indicator for the sufficiency of those targets selected. If the
selection is the one most likely to be correct, marginals of
all the remaining targets should be negligible.

3. Evaluation on 28S rDNA Sequences

We used a set of 1230 28S rDNA sequences from dif-
ferent organisms present in the Meiobenthos [12]. The set
contains redundancies and many close homologs. To re-
duce the level of redundancy we used the blastclust software
from NCBI to cluster sequences in the date set which share

at least 99% sequence identity over at least 99% of their
length. Given the average sequence length of about 676 nu-
cleotides this corresponds to about 7 mismatches between
clustered sequences on average. The 149 clusters contain-
ing two or more sequences represent about 56% of all se-
quences. For each of those clusters we picked an arbitrary
(first id in the blastclust output) representative. This proce-
dure resulted in a test set consisting of 679 sequences.

For 19 of the 679 sequences, we were unable to find
any suitable oligos under the prescribed experimental con-
ditions (Temperature of 45ÆC, oligo length between 19 and
22 nt,∆G range of the perfect duplex between�22700 and
�21500 cal/mol, 0�075 M NaCl). The remaining 660 se-
quences resulted in 13112 candidate probes. A final design
containing 2246 probes was computed using the greedy al-
gorithm proposed. Each target was covered by at least five
probes (five-fold coverage) if at all possible. On average
each probe hybridizes to 2�55 targets.

To quantify the performance of the group testing scheme
in the presence of errors, we carried out the following ex-
periment. A set of target sequences was chosen randomly
so that the number of sequences chosen was distributed ac-
cording to the prior on the cardinalitiesck. We used an
uninformed prior on the frequenciesfi. The selected se-
quences were assumed to be true positives. Given the de-
signD we computed the set of positive probes and removed
each probe from that set according to the assumed false neg-
ative rate fp � 0�01 respectivelyfp � 0�05. Probes were
selected i.i.d as false positives with probabilityfn � 0�01
respectivelyfn � 0�05. The results were used as input for
the decoder and the rank of the true positives was computed
and averaged over the 592 respectively 667 repetitions of
the experiment; see Table 1. Ideally, thek true positives
should appear as the firstk targets in the output.

4. Discussion

We have presented a DNA microarray design method-
ology based on non-unique oligos and group testing.
Our method is the first that explicitly considers cross-
hybridization issues and experimental errors within this
framework. The results are very promising. Even in the
case of 5% false positive and false negative errors for the hy-
bridizations, which for smaller numbers of targets present in
a sample implies more false positive than true positive spots
on a microarray, 92% of the targets present can be identified
if we allow for one false positive target.

The high robustness of the method is even more remark-
able given the fact that in prior work only 408 sequences —
compared to 660 sequences for our group testing scheme —
could be identified using unique oligos [9]. It remains un-
clear whether multiple coverage (i.e., several unique probes
for each target) could be obtained at all in the prior setting.

6

Proceedings of the Computational Systems Bioinformatics (CSB’03) 
0-7695-2000-6/03 $17.00 © 2003 IEEE 



#positives n top 1 top 2 top 3 top 4 top 5 top 10
1 285 0.905 0.965 0.989 0.993 0.993 0.996
2 190 0.926 0.976 0.995 1.000 1.000
3 80 0.921 0.958 0.983 1.000
4 34 0.846 0.919 0.971
5 3 0.800 1.000
1 309 0.909 0.974 0.990 0.997 1.000 1.000
2 202 0.884 0.946 0.973 0.993 1.000
3 108 0.873 0.951 0.969 1.000
4 36 0.910 0.951 1.000
5 12 0.867 0.967

Table 1. The fraction of true positives among the top k in the output of the decoder, ranked according
to their probability. We assumed that fp � fn � 0�01 (top) and fp � fn � 0�05 (bottom). A total of 592
(top) respectively 667 (bottom) experiments were performed. The proportion of samples of each
cardinality follows the prior ck.

The framework presented can be easily extended to ap-
ply in other settings. We have demonstrated for expository
reasons the decoding of hybridization experiments with a
binary classification of the hybridization level. In [10] de-
tails for an arbitrary but discrete set of experimental out-
comes, which translates directly to the situation described
here, are given.

A quantitative analysis to provide information about the
respective abundance of each target would require a more
substantial modification. The aspect which mainly needs
further investigation are the dynamics of hybridization re-
actions. A clarification of their behavior if multiple parallel
or competing reactions occur is required before construc-
tion of a valid statistical model. A statistical model and a
MCMC approach using essentially mixtures of probability
functions is supported in the framework described.

Evolutionary information about targets, particularly
when the target sequences are given as members of the fam-
ilies they belong to, will likely improve performance of the
experimental setting. Probes are classified and selected at
two hierarchy levels, family and members of each family.
This requires a preprocessing step identifying probes in the
hybridization matrixH which bind to (almost) all family
members. The decoding should be adjusted to account for
the hierarchical information, particularly conditioning the
probability of the presence of individual family members
upon the results of the corresponding family probes.

Detection of recombination events is another problem of
relevance. For viruses likeH. influenzae, where recombina-
tion events are frequent, a large number of probes as well as
their location on the target sequence could be used for their
characterization.
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