
Turtle: Identifying frequent k-mers with

cache-efficient algorithms

Rajat Shuvro Roy 1,2,3∗, Debashish Bhattacharya 2,3 and Alexander Schliep 1,4

1Department of Computer Science,
2Department of Ecology, Evolution and Natural Resources,

3Institute of Marine and Coastal Sciences ,
4BioMaPS Institute for Quantitative Biology.

Rutgers University, New Brunswick, NJ 08901, USA.

May 9, 2013

Abstract

Counting the frequencies of k-mers in read libraries is often a first step
in the analysis of high-throughput sequencing experiments. Infrequent k-
mers are assumed to be a result of sequencing errors. The frequent k-mers
constitute a reduced but error-free representation of the experiment, which
can inform read error correction or serve as the input to de novo assembly
methods. Ideally, the memory requirement for counting should be linear
in the number of frequent k-mers and not in the, typically much larger,
total number of k-mers in the read library.

We present a novel method that balances time, space and accuracy
requirements to efficiently extract frequent k-mers even for high coverage
libraries and large genomes such as human. Our method is designed to
minimize cache-misses in a cache-efficient manner by using a Pattern-
blocked Bloom filter to remove infrequent k-mers from consideration in
combination with a novel sort-and-compact scheme, instead of a Hash,
for the actual counting. While this increases theoretical complexity, the
savings in cache misses reduce the empirical running times. A variant can
resort to a counting Bloom filter for even larger savings in memory at the
expense of false negatives in addition to the false positives common to
all Bloom filter based approaches. A comparison to the state-of-the-art
shows reduced memory requirements and running times. Note that we
also provide the first competitive method to count k-mers up to size 64.

The tools are freely available for download at
http://bioinformatics.rutgers.edu/Software/Turtle.
Contact: rajatroy@cs.rutgers.edu

∗to whom correspondence should be addressed

1

ar
X

iv
:1

30
5.

18
61

v1
 [

q-
bi

o.
G

N
]

 8
 M

ay
 2

01
3

http://bioinformatics.rutgers.edu/Software/Turtle

1 Introduction

K-mers play an important role in many methods in bioinformatics as they are
at the core of the de Bruijn graph structure ([14]) that underlies many of today’s
popular de novo assemblers ([18, 20]). They are also used in assemblers based
on the overlap-layout-consensus paradigm like Celera ([12]) and Arachne ([5])
as seeds to find overlap between reads. Several read correction tools ([6, 8, 10])
use k-mer frequencies for error correction. Their main motivation for counting
k-mers is to filter out or correct sequencing errors by relying on k-mers which
appear multiple times and can thus be assumed to reflect the exact sequence
of the donor genome. In contrast, k-mers which only appear once are assumed
to contain sequencing errors. [11] and [9] make a more detailed, compelling
argument about the importance of k-mer counting.

In a genome of size g, we expect up to g unique k-mers. This number can
be smaller due to repeated regions (which produce the same k-mers) and small
k, since smaller k-mers are less likely to be unique, but is usually close to g for
reasonable values of k. However, depending on the amount of sequencing errors,
the total number of k-mers in the read library can be substantially larger than
g. For example, in the DM dataset (Table 2), the total number of 31-mers is
approximately 289.20M while the number of 31-mers occurring at least twice is
approximately 131.82M. The size of the genome is 122 Mbp (Mega base pairs).
This is not surprising because one base call error in a read can introduce up
to k false k-mers. Consequently counting the frequency of all k-mers, as done
by Jellyfish ([9]), which is limited to k ≤ 31, requires O(N) space where N
is the number of k-mers in the read library. This makes the problem of k-mer
frequency counting intractable for large read libraries like Human even on a large
machine with 256GB of memory. Ideally, the frequent k-mer identifier should use
O(n) space where n is the number of frequent k-mers (n� N). The approach
taken by BFCounter ([11]) achieves something very close to this optimum by
ignoring the infrequent k-mers with a Bloom filter ([2]) and explicitly storing
only frequent k-mers. This makes BFCounter much more memory efficient
compared to Jellyfish. However, the running time of BFCounter is very large for
two reasons. First, it is not multi-threaded. And second, both the Bloom filter
and the Hash table used for counting incur frequent cache misses. The latter has
recently been identified as a major obstacle to achieving high performance on
modern architectures, motivating the development of cache-oblivious algorithms
and data structures ([1]) which optimize the cache behavior without relying on
information of cache layout and sizes. Additionally, BFCounter is also limited to
a count range of 0-255 which will often be exceeded in single-cell experiments due
to the large local coverage produced by whole genome amplification. A different
approach is taken by DSK ([16]) to improve memory efficiency. DSK makes
many passes over the reads file and uses temporary disk space to trade off the
memory requirement. Though [16] claimed DSK to be faster than BFCounter,
on our machine using an 18TB Raid-6 storage system, DSK required more
wall-clock time compared to BFCounter. Therefore, we consider DSK without
dedicated high-performance disks like solid state and BFCounter to be too slow

2

for practical use on large datasets.
We present a novel approach which reduces the memory footprint to accom-

modate large genomes and high coverage libraries. One of our tools (scTurtle)
can report frequent 31-mers with counts (with a very low false positive rate)
from a human read set with 146.5 Gbp using 109GB of memory in approxi-
mately 90 minutes using 19 threads. In contrast, Jellyfish did not complete the
computation after 10 hours while consuming 185GB of memory, and BFCounter
took 127 GB of memory but did not complete the computation after 64 hours.
Like BFCounter, our approach also uses a Bloom filter to screen out k-mers with
frequency one (with a small false positive rate), but in contrast to BFCounter,
we use a Pattern-blocked Bloom Filter ([15]). The expected number of cache
misses for each inquiry/update in such a Bloom filter is one. The frequency of
the remaining k-mers are counted with a novel sorting and compaction based
algorithm that we introduce in this article. Our compaction step is very similar
to Run length encoding ([17]). Though the complexity of sorting is O(n log n),
it has sequential and localized memory access which helps in avoiding cache
misses and will run faster than an O(n) algorithm that has O(n) cache misses
as long as log n is much smaller than the penalty issued by a cache miss.

For larger datasets, where O(n) space is not available, the method mentioned
above will fail. We show that it is possible to get a reasonable approximate
solution to this problem by accepting small false positive and false negative
rates. The method is based on a counting Bloom filter implementation. The
error rates can be made arbitrarily small by making the Bloom filter larger.
Since the count is not maintained in this method, it only reports the k-mers
seen more than once (with a small false positive and false negative rate), but
not their frequency.

We call the first tool scTurtle and the second one cTurtle.

2 Methods

2.1 scTurtle

2.1.1 Outline

By a k-mer, we always refer to a k-mer and/or its reverse complement. Our
objective is to separate the frequent k-mers from the infrequent ones and count
the frequencies of the frequent k-mers. For that, first we use a Bloom filter to
identify the k-mers that were seen at least twice (with a small false positive rate).
To count the frequency of these k-mers, we use an array of items containing a
k-mer and its count. These are the two main components of our tool. Once
the counts are computed, we can output the k-mers having frequency greater
than the chosen cutoff. For the sake of cache efficiency, the Bloom filter is
implemented as a Pattern-blocked Bloom Filter ([15]). It localizes the bits set
for an item to a few consecutive bytes (block) and thus reduces cache misses.
The basic idea is as follows: when a k-mer is seen, the Bloom Filter is checked
to decide if it has been seen before. If that is the case, we store the k-mer in

3

Table 1: Comparison of Sort and Compress and Hash table based implementa-
tions for counting items and their frequencies. Jellyfish is a highly optimized
hash table based implementation for the k-mer counting problem. We also com-
pare against general purpose tools that uses Google sparse/dense Hash maps
for storing k-mers and their counts.

Method
Number of Insertions/Updates

458M 2.2B
Time(sec) space(GB) Time(sec) space(GB)

Sort and
Compress

153.37 2.70 523.41 7.10

Jellyfish 296.49 2.40 1131.70 7.20

Google
Dense
Hash

626.77 20.47 6187.95 40.38

Google
Sparse

Hash

1808.48 7.44 28069.18 10.60

the array with a count of 1. When the number of items in the array cross a
threshold, it is sorted in-place, and a linear pass is made, compressing items with
the same k-mer (which lie in consecutive positions of the sorted array) to one
item. The counts add up to reflect the total number of times a k-mer was seen.
Note that, this strategy is very similar to run length encoding ([17]) the items.
Our benchmarking (Table 1) shows that this very simple approach of storing
items and their frequencies is faster than a Hash-table based implementation.
An outline of the algorithm is given in Algorithm 1. More details are provided
in the following subsections.

Algorithm 1 scTurtle outline

1: Let, S be the stream of k-mers coming from the read library, BF be the
Bloom filter, A be the array to store k-mers with counts, t be the threshold
when we apply sorting and compaction.

2: for all k-mer∈ S do
3: if k-mer present in BF then
4: Add k-mer to A
5: end if
6: if |A| ≥ t then
7: Apply sorting and compaction on A
8: end if
9: end for

10: Apply sorting and compaction on A.
11: Report all k-mers in A with their counts as frequent k-mers and their counts.

4

2.1.2 k-mer extraction and bit-encoding

For space efficiency, k-mers are stored in bit-encoded form where 2-bits repre-
sent a nucleotide. This is possible because k-mers are extracted out of reads
by splitting them on ‘N’s (ambiguous base calls) and hence contain only A, C,
G and T. As we consider a k-mer and its reverse complement to be two repre-
sentations of the same object, whenever we see a k-mer, we also compute the
bit representation of the reverse complement and take the numerically smaller
value as the unique representative of the k-mer/reverse complement pair.

2.1.3 Identification of frequent k-mers with Pattern-blocked Bloom
Filter

A Bloom filter is a space efficient probabilistic data structure which, given an
item, can identify if this item was seen before with some prescribed, small
false positive rate. We use this property of the Bloom filter to identify k-mers
that were seen at least twice. An ordinary Bloom filter works as follows: A
large bit-array(B) of size L is initialized to 0. Given an item x, k hash values
(h1, h2, . . . , hk) using k independent hash functions (within the range [0, (L−1)])
are computed. We now check all the bits B[h1], . . . , B[hk]. If they are all set to
one, with high probability, this item has been seen at least once before. If not, it
is certainly the first appearance of this item and we set all of B[h1], . . . , B[hk] to
one. For all subsequent appearance(s) of this item, the Bloom filter will report
that it has been seen at least once before. In this way, the Bloom filter helps
us to identify frequent k-mers. Note that, if the bit locations are randomly
distributed, due to the very large size of the Bloom filter, each bit inspection
and update is likely to incur one cache miss. So, the total number of cache
miss per item would be k. On the contrary, if the bit-locations are localized to
a few consecutive bytes (a block), each item lookup/update will have a small
number of cache misses. This can be done by restricting h1, . . . , hk to the range
[h1(x), h1(x)+b] where b is a small integer. The bit pattern for each item can also
be precomputed. This is called the Pattern-blocked Bloom Filter. [15] observe
that the increase in false positive rate due to this localization and precomputed
patterns can be countered by increasing L by a few percent. To summarize, we
first select a block for an item (using a hash function), select h1 < h2 < . . . < hk

from a set of pre-computed random numbers such that all of them lie within
the block and update/inquire them sequentially.

2.1.4 Counting frequencies with sorting and compaction

Our next objective is to count the frequencies of the frequent k-mers. The basic
idea is to store the frequent k-mers in an array A of size > n, where n is the
number of frequent items. When this array fills up, we sort the items by the k-
mer values. This places the items with the same k-mer next to each other in the
array. Now, by making a linear traversal of the array, we can replace multiple
items with the same k-mer with one item where a count field represents how
many items were merged which is equal to how many times this k-mer was seen;

5

see Figure 1. Note that, this is very similar to run length encoding. Here is a
toy example: Say A = [. . . , (i, 1), . . . , . . . , (i, 1), , (i, 1)]. After sorting A =
[. . . , . . . , (i, 1), (i, 1), (i, 1),] and compressing results in A = [. . . , (i, 3), . . .].
We have to repeat these steps until we have seen all items. To reduce the
number of times we sort the complete array, we apply the following strategy.
We select a threshold n < t < |A|. We start with an unsorted k-mer array. It is
sorted and compacted (Phase-0 Sorted and Compacted array or Phase-0 SAC).
We progress in phases as follows. At phase i a certain number of items in the
beginning of the array are already sorted and compressed (Phase-(i− 1) SAC).
The new incoming k-mers are stored as unsorted items in the empty part of the
array. Let m be the total number of items in the array. When m > t, we sort
the unsorted items. Many of these k-mers are expected to exist in Phase-(i− 1)
SAC. We make a linear traversal of the array replacing k-mers present in both
Phase-(i − 1) SAC and the newly sorted part with one item in Phase-(i − 1)
SAC. k-mers not present in Phase-(i− 1) SAC are represented with one item in
the newly sorted part. The counts are added up to reflect the total number of
times a k-mer was seen. This takes O(m) time. Note that this compaction has
sequential and localized memory access which makes it cache efficient. After a
few such compaction steps, m > t and we sort and compress all the items in the
array to produce Phase-i SAC.

By repeatedly applying this mechanism on the frequent items, we ultimately
get the list of frequent k-mers with their counts decremented by 1. This is due
to the fact that when inserted into the array for the first time, an item was seen
at least twice unless its a false positive. To offset this, we simply add 1 to all
counts before writing them out to a file.

2.1.5 Parallelization

We implemented a one producer, multiple consumer model with a pool of buffers.
The producer extracts k-mers from the reads and distributes them among the
consumers. Each consumer has its own Bloom filter. Since a k-mer should
always pass through the same Bloom filter, we distribute the k-mers to the con-
sumers using the modulo operation which is one of the cheapest hash functions
available. Since modulo a prime number shows better hash properties compared
to non-primes, it is recommended that one uses a prime (or at least an odd)
number of threads as this spreads out the k-mers more evenly among the con-
sumers which is helpful for speeding up the parallelization. k-mers are stored in
buffers and only when the buffers fill up, they are transferred to the consumer.
Since consumers consume the k-mers at an uneven rate, having the same fixed
buffer size for all consumers may cause the producer to block if the buffer for a
busy consumer fills up. To reduce such blocking, we have a pool of buffers that
has more buffers than the number of consumers. If a consumer is taking longer
to consume its items, the producer has extra buffers to store its k-mers in. This
improves the speed-up.

With many consumers (usually > 13), the producer becomes the bottle-
neck. Therefore, its important to make the producer more efficient. The two

6

Figure 1: The Sorting and compaction mechanism. We start with an unsorted
k-mer array. It is sorted and compacted (Phase-0 SAC). The empty part is filled
with unsorted k-mers, sorted and compacted. After repeating this step several
times, the compacted new part almost fills up the whole array. Then all items
are sorted and compacted to produce Phase-1 SAC. This cycle repeats until all
k-mers have been seen.

(i,2) (i,1) (i,1)…... …... …... …... …... …... …... …... …... …... …...

Unsorted (K-mer, count) list

(i,2) (i,1) (i,1)…... …...…... …... …... …... …... …... …... …... …...

Sorted (K-mer, count) list

(i,4)…... …...…... …... …... …... …...

Sorted & Compressed (K-mer, count) list (SAC)
…...

Empty

(i,4)…... …...…... …... …... …... …...

Phase-1 SAC (old part)

…...

Unsorted (new) part

(j,1) (i,1) (j,1)…... …... …... …...

(i,5)…... …...…... …... …... …... …...…...

New (SAC)
part

(j,2) …... …...

Empty

(i,5)…... …...…... …... …... …... …...…...

New part

(j,2) …... …...

Empty

…...

(i,5)…... …...…... …... …... …... …...…...

Empty

…...

Phase-2 SAC

Phase-1 SAC

Phase-1 SAC

7

most expensive parts of the producer are: converting reads to k-mers and the
modulo operation required to determine which consumer handles a particular
k-mer. Modern computers support SSE ([13]) instructions that operate on 128-
bit registers and can parallely perform arithmetic/logic operations on multiple
variables. We used SSE instructions for speeding up bit-encoding of k-mers.
It is also possible to design approximate modulo functions that execute much
faster than regular modulo instruction for some numbers (e.g. 5, 7, 9, 10, 63,
etc) ([19]). But each of these function have to be custom designed. If we restrict
the number of consumers to the numbers that have efficient modulo function,
its possible to improve the producer’s running time even further.

2.1.6 Running time analysis

We first analyze the sort and compress algorithm. Let the total number of
frequent k-mers (those with frequency ≥ 2) be N and let n be the number of
distinct frequent k-mers. We use an xn, x > 1, sized array A for storing the
frequent k-mers and their counts. First consider the following simplified version
of our algorithm: (x−1)n new items are loaded into the array and they are sorted
and compacted. Since there are n distinct k-mers, at least xn − n = (x − 1)n
locations will be empty after sorting and compaction. We again load (x − 1)n
items and perform sorting and compaction. We iterate until all N items have
been seen. Each iteration takes O(xn log xn + xn) time and we have at most
N/(x− 1)n such iterations. So, the total time required is:

O

(
N

(x− 1)n
(xn log xn + xn)

)
=O

(
x

(x− 1)
(N log xn + N)

)
≤O

(
x

(x− 1)
(N logN + N)

)
As discussed earlier, to reduce number of times sorting is performed, which is
much more expensive than compaction, we implemented a modified version of
the above method which delays sorting at the expanse of more compactions. Our
benchmarking shows this to be faster than the naive method. The algorithm
we implemented progress in phases as follows. At the beginning of phase i,
the array is filled up with unsorted elements. They are sorted and compacted
(O(xn log xn+ xn)). This is called the Phase-(i− 1) SAC. Let e be the number
of empty locations after each complete sorting and compaction step. Then,
(x − 1)n ≤ e ≤ xn. The new incoming k-mers are stored as unsorted items
in the empty locations. When the empty part is full, we sort the new items
(O(xn log xn)). Many of these k-mers are expected to exist in Phase-(i − 1)
SAC. We make a linear traversal of the array replacing k-mers present in both
Phase-(i−1) SAC and the newly sorted part with one item in Phase-(i−1) SAC.
k-mers not present in Phase-(i − 1) SAC are represented with one item in the
newly sorted part. The counts are added up to reflect the total number of times a
k-mer was seen. The total cost of a lazy compaction is therefore upper bounded
by O(xn log xn + xn). This again creates empty locations at the end of the

8

array which allows us to perform another round of lazy compression. We assume
that the incoming items are uniformly distributed and every lazy compaction
stage reduces the size of the empty part by an approximately constant fraction
1/c. Therefore, on average, we expect to have c lazy compaction stages. This
completes Phase-i, the expected cost of which is upper bounded by:

O(xn log xn + xn + c(xn log xn + xn))

=O((c + 1)(xn log xn + xn))

In order to compute how many phases are expected to consume all N items, we
observe that, at every phase, the lazy compaction steps consumes a total of at
least (x− 1)n{1 + (1− 1

c) + (1− 2
c) + . . .+ (1− c−1

c)} = (x− 1)n(c+ 1)/2 items.
So, on average, each phase consumes at least (c+ 1)n(x−1)/2 items and hence,
the expected number of phases is at most 2N/n(c + 1)(x − 1). Therefore, the
total expected cost would be:

≤ 2N

(c + 1)n(x− 1)
O (xn(c + 1) log xn + xn(c + 1))

=
2x

(x− 1)
O (N log xn + N)

≤ O

(
x

(x− 1)
(N logN + N)

)
Note that we obtained the same expression for the naive version of sorting
and compaction. It is surprising that this expression is independent of c. As an
intuitive explanation, observe that more lazy compactions within a phase results
in more items being consumed by a phase, which in turn, decreases the number
of phases. This inverse relationship between c and the number of phases makes
the running time independent of c. We found the naive version to be slower than
the implemented version in empirical tests and therefore, believe our bound to
be an acceptable approximation.

We now analyze the performance of sorting and compaction based strategy
against a hash table based strategy for counting frequency of items. Let p be
the cache miss penalty, h be the hashing cost, s is the comparison and swapping
cost for sort and compress and b be the number of items that fit in the cache.
The cost of frequency counting in the hash based method will be (p+h)N since
each hash update incurs one cache miss. For sorting and compress, we will have
one cache miss for every b operations and so, the cost for sorting and compaction
will be (p/b + s)a(N logN + N), where a = x

(x−1) . To compute the value of N

for which sorting and compaction will be faster than a hash based method, we
write:

(p + h)N ≥(p/b + s)a(N logN + N)

logN ≤ (p + h)

(p/b + s)a
− 1

9

Let a comparison and swap be one unit of work. A conservative set of values like
s = 1, p = 160 ([7]), h = 8, b = 256 (assuming 8 bytes items and 2KB cache),
a = 2 results in N ≤ 250. Therefore, for a large range of values of N , with a
fast and moderate sized cache, the sorting and compaction based method would
run faster than a hash based method.

Since every observed k-mer has to go through the Bloom filter, the time
required in the Bloom filter is O(M) where M is the total number of k-mers in
the read library. So, the total running time that includes the Bloom filter checks
and sorting and compression of the frequent items is O(M) + O(N logN + N).
Our measurements on the datasets used show that the total time is dominated
by the Bloom filter updates (i.e. O(M) > O(N logN + N)).

2.2 cTurtle

When there are so many frequent k-mers that keeping an explicit track of the
k-mers and their counts is infeasible, we can obtain an approximate set of fre-
quent k-mers by using a counting Bloom filter. Note that, the number of bits
required for a Bloom filter for n items is O(n) but the constants are small. For
example, it may be shown that for a 1% false positive rate, the Bloom filter size
is recommended to be approximately 9.6n bits ([4]). On the other hand, with a
k-mer size of 32 and counter size of 1 byte, the memory required by any method
that explicitly keeps track of the k-mers and their count is at least 9n bytes or
72n bits. So, the Bloom filter method will require much less memory.

The basic idea of our counting Bloom filter is to set k bits in the Bloom filter
when we see an item for the first time. When seen for the second time, the item
is identified as a frequent k-mer and written to disk. To record this writing, k′

more bits are set in the Bloom filter. For all subsequent sightings of this item,
we find the (k + k′) bits set and know that this is a frequent k-mer that has
already been recorded. For cache efficiency, we implement the counting Bloom
filter as a Pattern-blocked counting Bloom filter as follows. We take a larger
Bloom filter (B) of size L. When an item x is seen, k values (h1, h2, . . . , hk)
within the range [h(x), h(x)+b], where h(x) is a hash function and b is the block
size, are computed using precomputed patterns. If this is the first appearance
of x, with high probability, not all of the bits B[h1], . . . , B[hk] are set to one
and so we set all of them. When we see the same item again, we will find
all of B[h1], . . . , B[hk] set to one. We then compute another set of locations
(hk+1, hk+2, . . . , hk+k′) within the range [h(x)+b, h(x)+2b] using precomputed
patterns. Again, with high probability, not all of B[hk+1], . . . , B[hk+k′] are set
to 1 and so we set all of them. At the same time we write this k-mer to disk
as a frequent k-mer. For all subsequent observations of this k-mer, we will find
all of B[h1], . . . , B[hk+k′] set to 1 and will avoid writing it to disk. Note that a
false positive in the second stage means that we don’t write the k-mer out to
file and thus have a false negative.

Currently, cTurtle reports k-mers with frequency greater than one. But this
strategy can be easily adopted to report k-mers of frequency greater than c > 1.
We argue that for most libraries with reasonable uniform coverage, c = 1 is

10

sufficient. Let C be the average nucleotide coverage of a read library with read

length R. Then the average k-mer coverage is Ck = C(R−k+1)
R ([20]). Suppose we

have an erroneous k-mer with one error. The probability that the same error will
be reproduced is 1

3k where 1/k is the probability of choosing the same position
and 1/3 is the probability of making the same base call error. Therefore, the
expected frequency of that erroneous k-mer is 1 + Ck−1

3k . For R = 100, k = 31,
this expression is 1 + 0.0075C. So, we need C > 132.85 at a location for an
erroneous 31-mer to have frequency greater than 2. Since most large libraries
are sequenced at much lower depth (< 60x), such high coverage is unlikely
except for exactly repeated regions and therefore, our choice of frequency cutoff
will provide a reasonable set of reliable k-mers. However, this does not hold
for Single Cell libraries which exhibit very uneven coverage ([3]), but note that,
frequent k-mers are considered reliable only for uniform coverage libraries and
thus single cell libraries are excluded from our consideration.

The parallelization strategy is the same as that for scTurtle.

3 Comparisons with existing k-mer counters

The datasets we use to benchmark our methods are presented in Table 2. The
library sizes range from 3.7 Gbp to 146.5 Gbp for genomes ranging from 122Mbp
to 3.3Gbp. To the best of our knowledge, currently Jellyfish ([9]) is the fastest
and DSK ([16]) is the most memory efficient open-source k-mer counters. BF-
Counter ([11]) uses an approach similar to ours and is memory efficient but in
contrast to our method, not computationally efficient.

On the two small datasets, Jellyfish runs faster but uses more memory than
scTurtle (1.7× faster using 1.71× memory for GG dataset with 19 threads).
Jellyfish’s lower wall-clock time is mainly due to its parallelization scheme, which
is not limited to one producer for generating and distributing the k-mers—the
major bottleneck for the Turtles (Figure 2). On the two large datasets, Jellyfish
did not produce results after running for more than 10 hours on a machine with
256GB memory, while our tools could work with less than 128GB. Unexpectedly,
on these large datasets, BFCounter required more memory than scTurtle (over
128GB vs. 109GB). We suspect this is due to the memory overhead required to
reduce collusions in the hash table which we avoid using our sort and compaction
algorithm. [16] claimed DSK to be faster than BFCounter, but on our machine,
which had a 18TB Raid-6 storage system of 2TB SATA disks, it proved to be
slower (1591 mins vs. 1012 mins for the GG dataset). [16] reported using more
efficient storage systems (like SSD), the lack of which in our machine might
explain DSK’s poor performance in our experiments. The detailed results are
presented in Table 3 for multi-threaded Jellyfish, scTurtle and cTurtle. Since
BFCounter (single threaded) and DSK (4-threads) do not allow variable number
of threads, we present their results separately in Table 4.

To validate our claim that the wall-clock time (and therefore parallelization)
may be improved by speeding up the producer, we made special versions of
scTurtle and cTurtle with are 31-threads and a fast approximate modulus-31

11

Table 2: Descriptive statistics about the datasets used for benchmarking. The
library sizes range from 3.7Gbp to 146.5Gbp and the genome size ranges from
122Mbp to 3.3Gbp.

Set ID Organism Genome Size (Mbp) Read Lib Bases (Gbp)

DM D. Melanogaster 122 SRX040485 3.7

GG G. Gallus 1× 103 SRX043656 34.7

ZM Z. Mays 2.9× 103 SRX118541 95.8

HS H. Sapiens 3.3× 103 ERA015743 146.5

function. For the largest library tested (HS), on average, the special version
of scTurtle produces frequent 31-mers in approximately 73 minutes compared
to approximately 90 minutes by the regular version (a 19% speedup). As we
use 64-bit integers for storing k-mers of length 32 and less and 128-bit integers
for storing k-mers of length in the range 33 to 64, the memory requirement
for larger k-mers were also investigated. Again for the largest dataset tested
(HS), we found that scTurtle’s memory requirement increased from 109GB for
0 < k ≤ 31 to 172GB for 32 ≤ k ≤ 64 (a 58% increase). Note that the Turtles
require less memory for up to 64-mers than Jellyfish for 31-mers. Detailed
results of all the datasets for the Turtles are presented in Table 5.

We also examined the error rates for our tools and BFCounter. Note that,
just like BFCounter, scTurtle has false positives only and cTurtle has both false
positives and false negatives. We investigated these rates for the two small
datasets (see Table 6) and found error rates for all tools to be smaller than 1%.
For the large datasets, due to memory requirements, we could not get exact
counts for all k-mers and therefore could not compute these rates.

4 Conclusion

Identifying correct k-mers out of the k-mer spectrum of a read library is an
important step in many methods in bioinformatics. Usually, this distinction is
made by the frequency of the k-mers. Fast tools for counting k-mer frequencies
exist but, for large read libraries, they may demand a huge amount of memory
which can make the problem unsolvable on machines with moderate memory
resource (≤ 128 GB). Simple memory efficient methods, on the other hand, can
be very time consuming. Unfortunately there is no single tool that achieves
a reasonable compromise between memory and time. Here we present a set
of tools that make some compromises and simultaneously achieves memory and
time requirements that are matching the current state of the art in both aspects.

In our first tool (scTurtle), we achieve memory efficiency by filtering k-
mers of frequency one with a Bloom Filter. Our Pattern-blocked Bloom filter
implementation is more time-efficient compared to a regular Bloom filter. We
present a novel strategy based on sorting and compaction for storing frequent
k-mers and their counts. Due to its sequential memory access pattern, our
algorithm is cache efficient and achieves good running time. However, because

12

Table 3: Comparative results of Wall clock time and memory between scTurtle,
cTurtle and Jellyfish. Each reported number is an average of 5 runs. The k-mer
size is 31. Recall that scTurtle and Jellyfish report k-mers and their counts,
while Porkmer only reports the k-mers with count > 1.

Set ID
Tool Multi-threaded Wall clock time (min:sec) Memory

5 7 9 11 13 15 17 19 (GB)

DM
Jellyfish 3:59 2:59 2:24 1:59 1:42 1:22 1:13 1:12 7.4
scTurtle 4:55 3:37 2:48 2:34 2:28 2:30 2:24 2:20 5.5
cTurtle 3:41 2:43 2:04 1:55 1:55 1:55 1:55 1:56 4.2

GG
Jellyfish 46:23 34:11 27:32 22:46 19:44 17:29 15:38 14:19 81.9
scTurtle 56:42 40:20 33:24 30:07 28:06 25:57 25:16 25:52 47.1
cTurtle 45:16 33:04 23:40 21:37 21:06 21:16 21:34 21:21 29.9

ZM
Jellyfish N/A N/A N/A N/A N/A N/A N/A N/A N/A
scTurtle 171:36 114:24 95:00 77:48 68:48 65:09 67:24 67:12 82.1
cTurtle 131:00 98:48 72:48 65:12 65:36 65:12 63:24 63:48 51.6

HS
Jellyfish N/A N/A N/A N/A N/A N/A N/A N/A N/A
scTurtle 212:00 152:36 124:36 106:24 97:12 89:36 89:12 89:36 109.5
cTurtle 171:00 123:12 98:00 87:12 91:12 89:24 88:00 90:24 68.5

Table 4: Performance of BFCounter and DSK (4 threads) for 31-mers. Some of
the results are not available since those computations could not be completed
within a reasonable time.

Set ID Tool Wall-
clock
time

(min:sec)

CPU Uti-
lization

(%)

Space (GB)

DM
BFCounter 78:35 99 3.24

DSK 170:37 318 4.86

GG
BFCounter 1011:51 99 29.26

DSK 1590:54 290 48.59

ZM
BFCounter >2289:00 NA >166.00

DSK >2923:00 NA NA

HS
BFCounter >3840:00 NA >128.00

DSK >1367:00 NA NA

13

Figure 2: CPU utilization curve for scTurtle (top) and cTurtle (bottom). The
diagonal shows the theoretical optimum. The deviation from the optimum is
largely due to the bottleneck of having a single threaded producer for extracting
and distributing k-mers.

14

Table 5: Performance of scTurtle and cTurtle for 64-mers. The tools ran with
fast mod and 31 threads. Each reported number is an average of 5 runs.

k-mer
size

Set ID Tool Wall-
clock
time

(min:sec)

CPU
Uti-
liza-
tion
(%)

Space (GB)

31

DM
scTurtle 02:18 2335.8 5.50
cTurtle 1:28 580.0 4.20

GG
scTurtle 24:48 2388.0 47.10
cTurtle 28:51 413.2 29.90

ZM
scTurtle 55:57 1838.0 82.15
cTurtle 74:46 756.0 51.60

HS
scTurtle 73:24 1563.0 109.53
cTurtle 98:24 512.0 68.55

48

DM
scTurtle 2:33 1790.0 8.30
cTurtle 2:30 871.4 4.76

GG
scTurtle 25:11 1373.8 70.69
cTurtle 25:29 693.8 29.34

ZM
scTurtle 90:16 1125.0 129.09
cTurtle 81:28 782.0 52.35

HS
scTurtle 112:11 953.4 172.11
cTurtle 105:10 657.6 69.29

64

DM
scTurtle 1:40 948.0 8.30
cTurtle 1:28 580.0 4.76

GG
scTurtle 31:60 825.8 70.69
cTurtle 28:51 413.2 29.35

ZM
scTurtle 79:90 1037.0 129.09
cTurtle 74:46 756.0 52.35

HS
scTurtle 79:56 952.0 172.11
cTurtle 98:24 512.0 69.29

Table 6: False Positive and False Negative rates of scTurtle and cTurtle. For
the large datasets, due to memory constraints, the exact counts for all k-mers
could not be obtained and therefore these rates could not be computed.

Set ID
scTurtle BFCounter cTurtle

(FP only)(%) (FP only)(%) FP (%) FN (%)

DM 0.003 0.300 1.9× 10−4 2.3× 10−4

GG 0.848 0.027 0.31 0.08

15

of the Bloom filters, we incur a small false positive rate.
The second tool (cTurtle) is designed to be more memory efficient at the

cost of giving up the frequency values and allowing both false positives and
false negatives. The implementation is based on a counting Bloom filter that
keeps track of whether a k-mer was observed and whether it has been stored
in external media or not. This tool does not report the frequency count of the
k-mers.

Both tools allow k-mer size of upto 64. They also allow the user to decide
how much memory should be consumed. Of course, there is a minimum memory
requirement for each dataset and the amount of memory directly influences the
running time and error rate, but we believe, with the proper compromises, the
frequent k-mer extraction problem is now approximately solvable for large read
libraries within reasonable wall-clock time using moderate amount of memory.

References

[1] M. A. Bender, E. D. Demaine, and M. Farach-Colton. Cache-oblivious
b-trees. SIAM J. Comput., 35(2):341–358, 2005.

[2] B. H. Bloom. Space/time trade-offs in hash coding with allowable errors.
Commun. ACM, 13(7):422–426, July 1970.

[3] H. Chitsaz, J. L. Yee-Greenbaum, G. Tesler, M.-J. Lombardo, C. L.
Dupont, J. H. Badger, M. Novotny, D. B. Rusch, L. J. Fraser, N. A. Gorm-
ley, O. Schulz-Trieglaff, G. P. Smith, D. J. Evers, P. A. Pevzner, and R. S.
Lasken. Efficient de novo assembly of single-cell bacterial genomes from
short-read data sets. Nat Biotechnol, 29(10):915–921, Oct 2011.

[4] L. Fan, P. Cao, J. Almeida, and A. Z. Broder. Summary cache: a scalable
wide-area web cache sharing protocol. IEEE/ACM Trans. Netw., 8(3):281–
293, June 2000.

[5] D. B. Jaffe, J. Butler, S. Gnerre, E. Mauceli, K. Lindblad-Toh, J. P.
Mesirov, M. C. Zody, and E. S. Lander. Whole-genome sequence assembly
for mammalian genomes: Arachne 2. Genome Res, 13(1):91–96, Jan 2003.

[6] D. R. Kelley, M. C. Schatz, and S. L. Salzberg. Quake: quality-aware
detection and correction of sequencing errors. Genome Biol, 11(11):R116,
2010.

[7] D. Levinthal. Performance analysis guide for intel core i7 processor and
intel xeon 5500 processors, 2008.

[8] Y. Liu, J. Schrder, and B. Schmidt. Musket: a multistage k-mer spectrum
based error corrector for illumina sequence data. Bioinformatics, Nov 2012.

[9] G. Marais and C. Kingsford. A fast, lock-free approach for efficient parallel
counting of occurrences of k-mers. Bioinformatics, 27(6):764–770, Mar
2011.

16

[10] P. Medvedev, E. Scott, B. Kakaradov, and P. Pevzner. Error correction of
high-throughput sequencing datasets with non-uniform coverage. Bioinfor-
matics, 27(13):i137–i141, Jul 2011.

[11] P. Melsted and J. K. Pritchard. Efficient counting of k-mers in dna se-
quences using a bloom filter. BMC Bioinformatics, 12:333, 2011.

[12] J. R. Miller, A. L. Delcher, S. Koren, E. Venter, B. P. Walenz, A. Brownley,
J. Johnson, K. Li, C. Mobarry, and G. Sutton. Aggressive assembly of
pyrosequencing reads with mates. Bioinformatics, 24(24):2818–2824, Dec
2008.

[13] D. A. Patterson and J. L. Hennessey. Computer Organization and De-
sign: the Hardware/Software Interface, 2nd Edition. Morgan Kaufmann
Publishers, Inc., San Francisco, California, 1998.

[14] P. A. Pevzner, H. Tang, and M. S. Waterman. An eulerian path approach
to dna fragment assembly. Proc Natl Acad Sci U S A, 98(17):9748–9753,
Aug 2001.

[15] F. Putze, P. Sanders, and J. Singler. Cache-, hash-, and space-efficient
bloom filters. J. Exp. Algorithmics, 14:4:4.4–4:4.18, Jan. 2010.

[16] G. Rizk, D. Lavenier, and R. Chikhi. Dsk: k-mer counting with very low
memory usage. Bioinformatics, 29(5):652–653, Mar 2013.

[17] D. Salomon. Data Compression. Springer, 1997.

[18] J. T. Simpson, K. Wong, S. D. Jackman, J. E. Schein, S. J. M. Jones, and
I. Birol. Abyss: a parallel assembler for short read sequence data. Genome
Res, 19(6):1117–1123, Jun 2009.

[19] H. S. Warren. Hackers Delight. Addison-Wesley Professional, 2nd edition
edition, 2012.

[20] D. R. Zerbino and E. Birney. Velvet: algorithms for de novo short read
assembly using de bruijn graphs. Genome Res, 18(5):821–829, May 2008.

17

	1 Introduction
	2 Methods
	2.1 scTurtle
	2.1.1 Outline
	2.1.2 k-mer extraction and bit-encoding
	2.1.3 Identification of frequent k-mers with Pattern-blocked Bloom Filter
	2.1.4 Counting frequencies with sorting and compaction
	2.1.5 Parallelization
	2.1.6 Running time analysis

	2.2 cTurtle

	3 Comparisons with existing k-mer counters
	4 Conclusion

